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Abstract

The shift from keyword-based to embedding-based ad targeting in large language model
platforms creates a fundamental challenge: advertisers must bid on regions of continuous, high-
dimensional space rather than discrete keywords. We propose a geometric framework based
on power diagrams (additively weighted Voronoi tessellations) where each advertiser’s terri-
tory in embedding space is determined by their bid-weighted proximity. Our main theoret-
ical contribution is establishing that, for isotropic Gaussian value functions over a continu-
ous impression space, the welfare-maximizing allocation is a power diagram, and the unique
incentive-compatible, individually rational, welfare-maximizing mechanism computes payments
via Voronoi cell integration—reducing the mechanism design problem to a computational geom-
etry problem (Theorem . We characterize the geometry of strategic behavior: under exact
VCG, center misreporting never helps (Theorem , but under approximate payment rules,
the gradient of value received points toward high-density regions of the impression distribution
(Theorem , quantifying the vulnerability of practical mechanisms to spatial manipulation.
We prove that best-response bid dynamics converge to the unique Nash equilibrium in N rounds
(Theorem [3.8), and show that random projections to O(log N/?) dimensions preserve the al-
location (Theorem , making high-dimensional deployment tractable. Experimentally, we
compare power-diagram-native auctions against discretized baselines (GSP and VCG on IAB-
style category grids) across d € {2,5,10,20}. At d = 2, all mechanisms perform similarly, but
the welfare gap widens dramatically with dimensionality: Power-VCG achieves 37% higher social
welfare than discretized baselines at d = 10 and 32% at d = 20, while maintaining exactly zero
IC regret (versus regret exceeding 1.0 for discretized VCG at d > 10). Winner determination
via kd-tree indexing runs in ~0.15 us per impression, independent of the number of advertisers,
meeting real-time latency requirements.

1 Introduction

Online advertising has been built on discrete auction mechanisms. In Google’s search advertising,
the fundamental biddable unit is a keyword: advertisers bid on “running shoes” or “mesothelioma
lawyer,” and a second-price-like auction clears efficiently for each query. This discrete structure
enables clean market mechanics—winner determination, truthful bidding incentives, and tractable
budget forecasting.

The emergence of large language model (LLM) platforms as advertising venues disrupts this
foundation. OpenAl announced in January 2026 that it would begin testing advertisements in
ChatGPT, describing their approach as “intent-based monetization” across 800 million monthly
users |[OpenAl, 2026|. Similar efforts are underway at Perplexity and other conversational Al plat-
forms.



In these systems, user interactions are not represented as keywords but as points in continuous,
high-dimensional embedding spaces. A user’s conversation traces a trajectory through this space, and
an advertising “impression” corresponds to a point encoding semantic content, user intent, temporal
context, and other dimensions simultaneously. Advertisers do not want individual keywords—they
want regions of this space.

This paper introduces a geometric framework for ad auctions in continuous embedding spaces.
Our key insight is that when advertiser value functions are modeled as functions of distance in
embedding space, the natural allocation mechanism is a power diagram—an additively weighted
Voronoi tessellation where bids determine territory boundaries.

Contributions.

1. We formalize the embedding-based ad auction problem, defining impression spaces, advertiser
value functions, and allocation mechanisms in continuous space (Section .

2. For the isotropic Gaussian case, we prove the welfare-maximizing allocation is a power diagram
and that the mechanism with VCG payments computed via Voronoi cell integration is the
unique 1C, IR, welfare-maximizing mechanism—reducing mechanism design to computational
geometry (Section [3] Theorem [3.3)).

3. We characterize the geometry of strategic behavior: exact VCG is fully IC for center reports
(Theorem , but under approximate payment rules, the value-received gradient (Theo-
rem [3.5)) quantifies vulnerability to spatial manipulation—advertisers are incentivized to shift
toward high-density impression regions.

4. We prove that best-response bid dynamics converge to the unique Nash equilibrium in N
rounds (Theorem [3.8)), and contrast this with cycling under GSP (Theorem [3.9).

5. We extend the framework to anisotropic preferences with quadric boundaries (Section {4 and
mixture-of-Gaussian preferences with virtual advertiser decomposition (Section .

6. We show that random projection to O(log N/e?) dimensions preserves the power diagram
allocation (Theorem [5.3)), making high-dimensional deployment tractable.

7. We provide O(log N) winner determination and payment computation via spatial indexing,
with a full auction algorithm (Section [6]).

8. We give budget prediction bounds via Monte Carlo estimation (Section .

9. We experimentally validate the framework against discretized baselines, showing consistent
improvements in welfare and revenue (Section [g)).

Related work. Our work bridges several lines of research. We describe each precisely to clarify
our contribution.

Mechanism design for LLMs. Diitting et al.|[2024b| model LLM interactions as sequential token-
level decisions and design mechanisms for selecting which tokens to monetize; their allocation unit is
a token or token sequence. Hajiaghayi et al.|[2024] propose RAG-based ad auctions where retrieved
documents carry ads and the mechanism selects which documents to surface; the biddable unit
is a document slot in the retrieval pipeline. Xu et al. [2026] model genre-based bidding for LLM-
generated responses, discretizing the ad space into a fixed set of content genres. |Banchio et al.| [2025]
study ads in conversational settings with a focus on user experience externalities across turns. Our



model operates at the impression level: each conversation maps to a point in continuous embedding
space, and the mechanism allocates that point to an advertiser via geometric partitioning. The key
difference is that token-level and slot-level mechanisms cannot express spatial competition between
advertisers over regions of semantic space, which is the central object of our framework.

Optimal transport and mechanism design. Daskalakis et al. [2013] establish that optimal multi-
item auction design with continuous buyer types can be cast as an optimal transport problem,
yielding characterizations of revenue-optimal mechanisms. Their framework applies to a single
buyer with multidimensional types. Our setting differs: we have N buyers (advertisers) competing
over a continuum of items (impressions), and we seek welfare-maximizing rather than revenue-
optimal mechanisms. The connection is conceptual—both exploit continuous-space structure—but
the technical tools differ: we use power diagrams rather than optimal transport duality.

Computational geometry of auctions. Joswig et al.|[2024] characterize the polyhedral structure
of the set of all truthful auction mechanisms for finite type spaces, showing it forms a polytope
whose vertices correspond to extremal mechanisms. Our work is complementary: we show that
for a specific class of continuous-type auctions (Gaussian values in embedding space), the welfare-
maximizing mechanism has the geometric structure of a power diagram [Aurenhammer, 1987],
enabling efficient computation. Power diagrams have not previously been connected to ad auction
design.

Neural auction design. |Diitting et al.|[2024a] learn approximately optimal (revenue-maximizing)
auction rules via deep networks, training on sampled bidder valuations. [Liu et al|[2021] deploy
learned auction mechanisms at Alibaba, jointly optimizing allocation and payment rules. These
approaches learn the auction mechanism end-to-end but treat the targeting problem (which ad is
relevant to which user) as exogenous. Our framework unifies targeting and auction design: the power
diagram simultaneously determines relevance (geometric proximity) and allocation (cell member-
ship), with provable incentive guarantees that learned mechanisms lack.

Industry practice. Current contextual advertising discretizes embedding spaces into taxonomies
(TAB’s ~700 content categories) and runs standard real-time bidding (RTB) auctions indepen-
dently per cell [Seedtag) 2025, |(GumGum /Verity, [2024]. This discretization discards the continuous
structure of embeddings: two impressions on opposite sides of a category boundary may be nearly
identical in embedding space yet participate in entirely different auctions. Our power diagram ap-
proach operates directly on the continuous space, eliminating boundary artifacts and capturing the
full geometric structure of advertiser competition.

2 Model

Definition 2.1 (Impression Space). Let X C R? be a compact convez set representing the embedding
space. Points x € X represent impressions—user interactions projected into embedding space. The
impression distribution u is a probability measure on X representing the density of user traffic.

Definition 2.2 (Advertiser). An advertiser i € [N] ={1,..., N} is characterized by:
o A center c¢; € X (their ideal customer embedding),
o A bid scalar b; € Rsqg (willingness to pay),
o A value function v; : X — R>q parameterized by the above.

Definition 2.3 (Allocation). An allocation is a measurable partition {Vo,Vi,...,VN} of X, where
Vi is the set of impressions allocated to advertiser i, and Vi is the unallocated set (reserved, e.g.,
for policy exclusions).



The social welfare of an allocation is:

N
Wih =3 /V 0i(x) dp(x). 1)

The welfare-maximizing allocation assigns each impression to the advertiser who values it most:

i*(x) = arg max v;(x). (2)
1€[N]

Definition 2.4 (Payment Rule). A payment rule p = (p1,...,pN) specifies each advertiser’s total
payment. A mechanism ({V;}, p) is incentive compatible (IC) if truthful reporting of type parameters
(bid b;, center c;, and covariance 3; as applicable) is a dominant strategy for each advertiser.

We consider three increasingly expressive parameterizations of v;:

2
Isotropic Gaussian. v;(x) = b; - exp(—Hx;%”), where o; > 0 is a reach parameter. When

o; = o for all ¢ (shared reach), the allocation przoblem has power diagram structure.

Anisotropic Gaussian. v;(x) = b; - exp(—(x — c) o (x — c;)), where ¥; = 0 is a covariance
matrix encoding directional preferences.

Mixture of Gaussians. v;(x) =b;- ZkK:ZI Wi, - exp(—(x — cik)TEi_kl (x — cik)), representing mul-
timodal preferences.

Notation summary. Table|[l|collects the notation used throughout the paper.

3 Isotropic Case: Power Diagrams

We first analyze the case where all advertisers share a common reach parameter o > 0, so v;(x) =
by - exp(— [|x — ci[[2 /o).

Lemma 3.1 (Log-value characterization). The welfare-mazimizing allocation assigns impression x
to i*(x) = arg max; v;(x). Since exp(-) is monotone and o is shared:

112
i*(x) = argmax |logb; — u . (3)
i€[N] g

This is precisely the definition of a power diagram (additively weighted Voronoi diagram) with
sites c¢; and weights w; = % logb;.

Definition 3.2 (Power Diagram). Given sites c1,...,cy € R and weights w1, ..., wy € R, the
power diagram is the partition {Vi,...,Vn} where:
Vim{xeX:lx—cil —wi < |x — o —w; Vj i} (4)

The boundary between cells V; and Vj is the hyperplane:

Hy = {x: x =il —wi = x = ¢ —wj } = {x:2(e; = ) Tx = lles [* = llell” = wj +1wi }

(5)



Table 1: Summary of notation.

Symbol Meaning

X CR? Impression (embedding) space

xekX A single impression

I Impression distribution (probability measure on X)
N Number of advertisers

c, e X Center of advertiser ¢ (ideal customer embedding)

b; € Ry Bid scalar of advertiser ¢

0,0 Reach parameter(s) (isotropic Gaussian bandwidth)
;>0 Covariance matrix of advertiser ¢ (anisotropic case)
v;(x) Value of impression x to advertiser ¢

w; = 0%logb; Power diagram weight for advertiser i

Vi Power diagram cell (territory) of advertiser 4

Vj_i Cell of advertiser j in the diagram computed without ¢
W(HVi}) Social welfare of allocation {V;}

Di Payment of advertiser ¢

U; Utility of advertiser i: value received minus payment
H;; Hyperplane boundary between cells V; and V;

K; Number of mixture components for advertiser ¢

Wik Mixture weight for component k of advertiser i

B; Budget of advertiser i

Theorem 3.3 (Power Diagram Mechanism: Uniqueness, IC, and IR). Consider N advertisers with
isotropic Gaussian value functions sharing a common reach parameter o > 0, over a continuous
impression space (X, ). Define the power diagram mechanism M = ({V;},p) as follows:

1. Allocation. The allocation is the power diagram with sites c; and weights w; = o2 logb;:

Vi={xe X x—clf —wi < x— ¢l —w; Vj £} ®)

2. Payment. FEach advertiser i pays the VOG externality, computed via Voronoi cell integration:
=3 [ ee0due =Y [ o0 dut) ™)
i#i Vi i#i Vi
where {Vj_i}#i 15 the power diagram computed on the N — 1 advertisers excluding i.
Then M satisfies:

(a) Welfare mazimization. {V;} mazimizes social welfare W ({Vi}) =", f‘/i v;(x) du(x) over
all measurable partitions of X.

(b) Incentive compatibility. Truthful bid reporting is a dominant strateqy: for each i and any
misreport b, # by, u;(b;) > u;(b}).

(c) Individual rationality. Every advertiser has non-negative utility: u; > 0 for all 1.

(d) Uniqueness. M is the unique mechanism (up to tie-breaking on measure-zero sets) that

stmultaneously satisfies welfare mazimization, 1C, and IR, among mechanisms where payments
do not depend on advertiser i’s own report beyond the allocation.



Proof. We establish each claim. The core contribution is showing that the continuous-space mecha-
nism design problem reduces to a computational geometry problem: welfare maximization becomes
power diagram construction, and payment computation becomes Voronoi cell integration.

Part (a): Welfare maximization. The welfare-maximizing allocation assigns each impression
pointwise to the highest-value advertiser: i*(x) = argmax;v;(x). For isotropic Gaussians with
shared o, we have v;(x) = b;exp(—||x — ¢;|* /o?). Since exp(-) is strictly monotone and o is
shared:

i*(x) = arg max[logb; — ||x — ¢;||* /o?] = argmin[||x — ¢;||* — 0% log ;). (8)
K] 7
This is precisely the definition of the power diagram with sites ¢; and weights w; = 0 log b; [Auren-
hammer} 1987|. The reduction from welfare maximization to power diagram construction is exact:
no approximation or discretization is involved. The partition {V;} defined by () implements the
pointwise maximum, hence maximizes welfare.

Part (b): Incentive compatibility. We adapt the VCG argument |Vickrey, 1961} Clarke,
1971} |Groves, [1973] to the continuous-impression setting. Write advertiser ’s utility under truthful
reporting:

wilby) = / 0i(x) dpu(x) — i

= [ 00 [ [ i =3 [ )t

J#i J#i
N
= / v (x) dp(x Z/ y x) dp(x) . (9)
j=1"Vi Ji
:W(\EVk}) hi (1ndependent of i’s report)

The term h; = Z#i Ji—i vj(x) dp(x) depends only on the other advertisers’ types and is indepen-
J

dent of i’s reported bid. Hence i maximizes u; by maximizing W ({Vj}). Since the allocation rule
already maximizes W when 7 reports truthfully, any misreport b; # b; can only decrease W (or leave
it unchanged), so w;(b;) > u;(b}).

Part (c): Individual rationality. We must show u; > 0. By (9), u; = W({Vi}) — hi, where
W ({Vy}) is the maximum welfare with all V advertisers and h; is the maximum welfare achievable
by the N — 1 advertisers excluding i. Adding advertiser ¢ to the market can only increase (or
maintain) welfare, since one could always allocate nothing to i and recover the (N — 1)-advertiser
optimum. Formally, W({Vi}) > >_, fvjﬂ‘ vj(x) dp(x) = h; because {\/}—i}j# U{V; "} is a feasible

(but not necessarily optimal) partition when 4 is present (assigning VO*" U V[i as unallocated or
redistributed). Hence u; > 0.

Part (d): Uniqueness. By the Green-Laffont characterization [Green and Laffont|, 1977],
in quasi-linear environments where the social choice function maximizes the sum of valuations, the
Groves class of payment rules is the unique class that implements the efficient allocation in dominant
strategies. The VCG mechanism (with h; depending only on others’ reports) is the unique member
of the Groves class that additionally satisfies IR. The only degree of freedom is tie-breaking, which
affects a measure-zero set of impressions (the power diagram boundaries H;;) and hence does not
affect utilities or payments under any absolutely continuous u.

Computational reduction. The significance of Parts (a)—(d) is that they reduce the mecha-
nism design problem entirely to computational geometry: (i) welfare-maximizing allocation reduces
to constructing a power diagram, which is a standard O(N log N) operation [Aurenhammer, |1987];



(ii) payment computation reduces to integrating over Voronoi cells—specifically, computing h; re-
quires constructing the (N — 1)-advertiser power diagram and integrating v; over each cell V]_z
In the isotropic case with shared o, these integrals involve Gaussian densities over polyhedral re-
gions, which can be computed via Monte Carlo sampling or, in low dimensions, exact polyhedral
integration. O

Remark 3.4 (Heterogeneous reach). When o; wvaries across advertisers, the allocation is still
welfare-mazimizing via , but boundaries are no longer hyperplanes. The cell V; is defined by:

. 2 _ . 2
V; = {X:logbi_HX 2C1H7210gbj—7”x ;JH Vj},
Ui O'j

which gives quadric (conic) boundaries. Theorem parts (b)-(d) still hold: the VCG argument
mn @ does not depend on the geometric structure of the cells, only on the pointwise welfare-
maximization property of the allocation. The computational reduction to power diagrams, however,
requires shared o.

3.1 Incentive Compatibility for Center Reports

Theorem establishes IC with respect to bid misreporting. Theorem (below) shows that exact
VCG is also I1C for center reports. However, practical mechanisms often use approximate payments
(Theorem [6.2)). The following theorem characterizes the geometry of value-received sensitivity to
center perturbations, which becomes exploitable under approximate payment rules.

Theorem 3.5 (Value-Received Gradient for Center Perturbations). Consider the isotropic Gaussian
model with N > 2 advertisers, shared reach o, and VCG payments. Under any payment rule where
the payment to advertiser i does not fully adjust to compensate for center misreporting (including the
second-score approzrimation of Theorem and GSP), there ezist configurations where an advertiser
can strictly increase utility by misreporting their center.

Moreover, the utility gain from an infinitesimal center misreport ¢, = ¢; +ed (with ||d|| = 1) is:
e, o= [ 160 -5 ot + [ G0 danbo, 0

where OV is the boundary of Vi, j(i,x) is the neighboring advertiser at boundary point X, g—g s the
rate of boundary displacement, and dug is the induced boundary measure.

Under truthful reporting, vi(x) = vj(;x)(x) on dV; (by the power diagram construction), so the
first integral vanishes, and the gradient of value received with respect to center perturbation is:

v [ vt ()

This gradient is zero if and only if c; is the v;-weighted centroid of V; under u, which generically
fails when p is non-uniform. Under exact VCG, the payment adjusts to cancel this gradient (see
Theorem @), but under approrimate payment rules that do not fully internalize the externality,
this gradient drives profitable center misreporting.

_ 22/ b exp(— [|x — <2 /02) (x — ¢i) dpu(x). (11)

truth o Jv;

Proof. We prove each claim in turn.
Utility decomposition. Under the VCG mechanism, advertiser ¢’s utility (from (9)) is u; =
W ({Vi})—hi. When i misreports center c}, the platform computes the allocation using the reported



center but i’s true value is still v;(x) = b;exp(— ||x — ¢;||* /o). Let {V}[} denote the allocation
computed using ¢}, and let W/, denote the true welfare under this allocation. Then:

wleh) = [ o) dux) - pi(e) (12

where p;(c}) is the VCG payment computed using ¢’s reported type (c;, b;).

Value recelved gradient computation. We compute the gradient of value received V; =
fv vi(x ) with respect to center perturbation. By the Leibniz integral rule for parameter-
dependent domalns, the derivative has two contributions: (i) the change in v; within the fixed cell,
and (ii) the boundary movement. On the power diagram boundary 0V;NoV}, we have v;(x) = v;(x)
(by the power diagram condition at the boundary, since the reported type is truthful). Therefore,
the boundary terms from expanding V; and shrinking V; cancel exactly in the total welfare W =
Vit iz ij vj dp. What remains is:

2
o2

Ve, Vi ‘truth / Ve, vi(x) dp(x) = /V vi(x)(x — ¢;) dp(x). (13)

Non-vanishing gradient. The value-received gradient vanishes if and only if:

Jy, vi(x xdu )

fw vi(x

That is, the gradient is zero if and only if ¢; equals the v;-weighted centroid of V; under u. For
generic non-uniform p, the v;-weighted centroid of V; differs from c; (it is pulled toward high-density
regions of ), so the gradient is non-zero. Under any payment rule that does not fully adjust to
cancel this gradient (i.e., any rule other than exact VCG), center misreporting is profitable.
Constructive example. Considerd =1, N =2 X =[-1,1],0=1,b; =by =1, ¢; = —0.3,
cy = 0.3. Let u be concentrated near z = 0.5 (e.g., u = N(0.5,0.1%) restricted to X). The
power diagram boundary is at x = 0 (midpoint, since bids are equal). Advertiser 1’s territory is

/V‘ vi(x)(x—c¢))du(x) =0 <= c¢;= (14)

Vi = [-1,0], which contains little impression mass. By (1)), the gradient V¢, u1 points in the +x
direction (toward the density mass). If advertiser 1 misreports ¢; = —0.3 + ¢ for small 6 > 0,

the boundary shifts rightward, capturing more of the high-density region around z = 0.5, and vy
evaluated at the newly captured points is computed using the true center, which is still reasonably
close. The net effect is a utility increase, verifiable by direct computation. O

Corollary 3.6 (Full IC for Center Reports under VCG). Under exact VOG payments, the power
diagram mechanism is incentive compatible in the full type space (b;,c;) for any impression distri-
bution w. That is, no advertiser can gain by misreporting either the bid b; or the center c;.

Proof. Under VCG, advertiser 4’s utility is u; = W({Vi}) — h; where h; is independent of ¢’s report.
When i misreports ¢}, the mechanism computes the allocation {V}/} using the reported type (c},b;).
The VCG payment to ¢ is:

pi = ;/ ;/ v;(x) dp(x (15)

where {V]*’} is the (N — 1)-advertiser diagram (independent of i’s report) and the second sum uses
the reported allocation {V;}. Note that the platform uses the true v; for j # i in both terms (since
other advertisers report truthfully).



Advertiser i’s true utility is then:

(e = [ o) dut) i = / wi(x) dp(x) + 3 / 0y() dp(x) — s = Wiese — by (16)
‘ Vi J#

where W/, = fv, vi(X) dp+ 325 4 fv, vj(x) dp is the true welfare under the misreported allocation.

Since {Vi} (the truthful allocatlon) maximizes welfare over all partitions, we have W/ . <
W ({Vk}). Hence:
ui(€g) = Wirie = hi < W({Vi}) — hi = ui(ci). (17)

This holds for any p, not just uniform. The argument relies on two facts: (1) VCG utility equals
true welfare minus a constant, and (2) the truthful allocation maximizes true welfare. O

Remark 3.7 (Reconciling Theorem with Theorem [3.5). Theorem and Theorem are
not contradictory. Theorem shows that under exact VCG, center misreporting never helps.
The non-vanishing gradient in measures the effect of center misreport on the value received
fV, vi(x) du, not on the full utzlzty u; = value — payment. Under exact VCOG, the payment adjusts to

fully internalize the externality, so u; = Wi, — hi, and truthful reporting mazimizes true welfare.
The practical importance of Theorem [3.5 arises in two scenarios:

1. Approzimate payment rules. If the platform uses a payment rule other than exact VCG
(e.g., the second-score approzimation of Theorem or GSP-style payments), the VOG utility
identity u; = W, — h; breaks, and the non-zero gradient in becomes exploitable. Under
any payment rule where the payment does not fully internalize the externality, advertisers have
incentive to shift centers toward high-density regions of .

2. Value received analysis. Fven under exact VCG, the gradient in characterizes how the
value received (not utility) responds to center perturbations. This is relevant for understanding
the sensitivity of the allocation to center specification errors, even when there is no strategic
incentive to misreport.

3.2 Convergence of Best-Response Dynamics

We now analyze the dynamic properties of the power diagram mechanism. In practice, advertisers
adjust bids over time in response to competitors. We show that under VCG payments with fixed
centers, bid dynamics converge, contrasting this with instability under GSP.

Theorem 3.8 (Convergence of Best-Response Dynamics under VCG). Consider the isotropic Gaus-

stan model with shared o, fized centers cy,...,cy, and VCOG payments. Let advertisers update bids
via best-response dynamics: in each round t, one advertiser ¢ updates bgtﬂ) = arg maxy, o ui(b;; b(fz)
Then:
1. Unique equilibrium. There exists a unique Nash equilibrium b* = (b{™e, ... b"®)—i.e.,

truthful bidding.

2. Immediate convergence. Under round-robin best-response updates, the equilibrium is reached
exactly in N rounds (one update per advertiser), because truthful bidding is a dominant strat-

€qy.



Proof. Step 1: Concavity of utility in own bid. Under VCG, advertiser i’s utility is u;(b;) =
W ({Vi}) — hi, where W is the maximum welfare with all advertisers and h; is independent of b;.
Writing W explicitly:

N
W:;/Vjvj(x) du(x) :/ijaxvj(x) du(x). (18)

Since v;(x) = b; exp(— ||x — ¢;||? /o?) is linear in b;, the function max; v;(x) = max(b;-g;(x), max;z; v;(x))
is the maximum of a function linear in b; and a constant (with respect to b;). Hence W (b;) =
Sy max(b; - gi(x), M_;(x)) du(x), where g;(x) = exp(—||x — ci||? /o?) and M_;(x) = max;; vj(X).

For each x, max(b;g;(x), M_;(x)) is convex in b; (as the pointwise maximum of a linear function
and a constant). Hence W (b;) is convex in b; (integral of convex functions).

However, u; = W — h; is convex in b;, not concave. This means the best response is at a
boundary. Indeed, the advertiser’s “true” bid b; reflects their willingness to pay, and under VCG,
truthful bidding ¢s the dominant strategy. The best response of each advertiser is to bid truthfully,
regardless of others’ bids.

Step 2: Dominant strategy implies immediate convergence. Since truthful bidding is a
dominant strategy (Theorem , each advertiser’s best response is bf = b independent of b_;.

The unique Nash equilibrium is b* = (b}, ... b"¢). Under round-robin updating, each advertiser
sets their bid to b{™® on their first turn, and after N rounds (one per advertiser), the equilibrium is
reached exactly. O

Proposition 3.9 (Cycling under GSP Payments). Under the Generalized Second Price (GSP)
payment rule applied to the discretized embedding space, best-response dynamics can cycle and fail
to converge.

Proof. We construct an explicit example. Consider d = 1, X = {0,1} (two discrete impressions),
N = 3 advertisers with values:

Impression x =0 Impression x =1

Advertiser 1 10 4
Advertiser 2 4 10
Advertiser 3 7 7

Under GSP on each impression independently, each impression runs a second-price auction.
The GSP payment for each impression is the second-highest bid. This is the well-known setting of
Edelman et al.|[2007], who showed that GSP does not have a dominant strategy equilibrium and
best-response dynamics can cycle.

In the power diagram context: if the platform discretizes X into two cells and runs GSP per
cell, advertiser 3 has incentive to alternate between bidding high on impression 0 (when advertiser
1 bids high on impression 1) and bidding high on impression 1 (when advertiser 1 bids high on
impression 0), creating a cycle. Specifically:

e Round 1: Advertisers bid truthfully. Advertiser 1 wins 2z = 0 at price 7 (GSP), advertiser 2
wins « = 1 at price 7. Advertiser 3 wins nothing.

e Round 2: Advertiser 3 best-responds by bidding 7.5 on x = 0. Now 3 wins x = 0 at price 4
(second-highest bid after 1 drops), advertiser 1 is displaced.

e Round 3: Advertiser 1 best-responds by overbidding on = 1. This displaces advertiser 2.

10



e The cycle continues as advertisers keep adjusting.

Under VCG in continuous space, no such cycling occurs because truthful bidding is dominant
(Theorem [3.8]). O

4 Anisotropic Case: Quadric Boundaries

When advertisers have directional preferences encoded by covariance matrices ¥;, the welfare-
maximizing allocation assigns:

i*(x) = arg max [log bi— (x—c;) 8 (x — cl)] . (19)

The boundary between cells V; and V} is the set:
{x f(x—c) B (x—e) — (x — cj)TEj_l(x —¢;) = logb; — log bj} , (20)
which is a quadric surface (ellipsoid, hyperboloid, or paraboloid depending on ¥;, ¥;).

Proposition 4.1 (Anisotropic IC). The welfare-mazimizing allocation under anisotropic Gaussian
value functions with VCG payments is incentive compatible with respect to the full type (b;,ci,%;).
That 4s, truthful reporting of all parameters is a dominant strategy.

Proof. The VCG utility identity extends to the anisotropic case without modification. Under truth-
ful reporting, the allocation maximizes welfare W = [, max; v;(x) du(x), and advertiser i’s utility
is uj =W — h;, where hy = 3., Ji—i vj(x) du(x) is independent of i’s report.

If 4 misreports any component c;f their type—b;, c¢;, or ¥;—the mechanism computes the allo-
cation using the reported type. Let {V}/} be the resulting allocation. The true welfare under this
allocation is:

Wie = | ot dnx)+ Y [ 0 dutx). (21)
vy £ 0 Vi
The VCG payment depends on the allocation {V}/} and the other advertisers’ true values vj (j # i),
S0:

Ui = /‘v/v Ui(x) du(X) —Pi = Wt,rue — hi. (22)

Since {V} (the truthful allocation) maximizes W over all partitions and {V}} is a feasible partition,
W{iwe < W. Hence u;(misreport) = W/, — hi < W — h; = u;(truth).

This argument relies only on the VCG payment structure and welfare-maximizing allocation,
not on the specific functional form of v;. It applies to any parameterization of advertiser types,
including anisotropic Gaussians and mixtures thereof. O

Remark 4.2 (Practical considerations for type reporting). While Theorem establishes IC for
the full type (b;,c;, 2;) under exact VCG, practical deployment may use approzimate payment rules
(see Section [61) Under approzimate payments, IC for (c;, ;) may fail, and the analysis of Theo-
rem [3.5—specifically the non-zero gradient in (11)) —quantifies the direction and magnitude of prof-
itable deviations. In practice, platform-inferred parameters (from historical advertiser behavior) can
complement self-reported types.
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Factorized bidding approximation. For practical deployment, we propose that advertisers
specify per-dimension reach parameters (o;, 1, ...,0;q) rather than a full d x d covariance matrix ;.
This corresponds to a diagonal ¥; = diag(c? Tiqsee ,0? ), reducing the parameter count from O(d?)
to O(d) while preserving the ability to Spec1ahze alorig dimensions.

5 Mixture of Gaussians: When Geometry Breaks Down

When advertiser ¢ has multimodal preferences:

=b; Z Wik exp( X — Cik) Zi_kl(x — clk)> , (23)

the boundaries between cells are level sets of sums of Gaussians—these can be arbitrarily complex
and do not admit closed-form descriptions in general.

Virtual advertiser decomposition. We propose representing each mixture component as a
separate “virtual advertiser” with bid b;w;., center c;., and covariance X;,. The set of virtual
advertisers participate in the auction independently, but share a budget constraint:

K;
Zpik < B, (24)
k=1

where p;i is the payment for virtual advertiser (i, k) and B; is advertiser i’s total budget.
This decomposition:

1. Reduces the mixture case to the anisotropic (or isotropic) case structurally.
2. Preserves approximate incentive compatibility for the bid scalars.

3. Introduces a budget-linking constraint that connects to the combinatorial auction literature.

Theorem 5.1 (Lipschitz Approximation). Let v : X — R be an L-Lipschitz value function on
the compact set X C R, For any € > 0, there exists a mizture of K isotropic Gaussians 0 with:

K- o((“mm)d> (25)

Proof. Let r = €¢/(2L) and let {x1,...,xx} be an r-covering of X: every point of X is within
distance r of some xj. The covering number satisfies K < (diam(X)/r41)% = O((L - diam(X)/e)?)
by a standard volume argument.

Define 4(x) = S5, apexp(— [|[x — x| /72), where a = v(xz)/ Y exp(— ||xx — xp||* /72)
is chosen so that ¥(xg) = wv(xy) at each center (using the partition of unity property of the
Gaussian kernel up to normalization). More precisely, define the partition of unity ¢x(x) =

exp(— ||x = xxl|* /%) / 2o exp(— [lx —xp||* /%) and set 6(x) = 32, v(xk)dr(x).

For any x € X:
0(x) —v(x)| = Z (k) dre(x Z¢k =D (k) — v(x)]ok(x)
k

<Z!UX1€ —v(x)[ - P (x). (26)

such that supycy [v(x) — 0(x)| < e.

12



The Gaussian weights ¢y (x) decay exponentially with distance ||x — x||. For the nearest center
Xg+ (with [|x — xg«|| < 7), Jv(xg+) — v(x)| < Lr = €/2 by Lipschitz continuity. For distant centers
(||x — x| > 7), the contribution ¢y (x) is exponentially small: ¢(x) < exp(— ||x — xx||* /7% + 1).
The total contribution of distant centers is bounded by €/2 by choosing the partition of unity
normalization to ensure the nearby center dominates. Combining, sup, |v(x) — 9(x)| < e. O

Remark 5.2 (Low intrinsic dimensionality). The exponential dependence on d in Theorem 5.1
reflects a worst case over all L-Lipschitz functions on R®. In practice, if the value function v
has low intrinsic dimensionality—meaning that v depends primarily on the projection of x onto a k-
dimensional affine subspace or, more generally, that the support of v lies on a k-dimensional manifold
M C R* with k < d—then the covering number of the effective domain is O((diam(M)/r)¥), and

the bound improves to:
. k
K:O<<Ld1am(/\/l)> ) (27)
€

Advertiser preferences in high-dimensional embedding spaces typically depend on a small number
of semantic axes (e.g., product category, price sensitivity, user intent), making k < d a realistic
assumption.

Proposition 5.3 (Dimensionality Reduction via Johnson-Lindenstrauss). Let N advertisers have
isotropic Gaussian value functions with shared o in X C R%. Let II € R™*% be a random projection
matriz with i.i.d. entries I;; ~ N'(0,1/m), where m = O(log N/e?). Then with probability at least
1—-1/N:

For all impressions x € X, the winner under the projected power diagram (with sites Ilc; and
impression 1Ix) is the same as the winner under the original power diagram, provided all pairwise
score gaps exceed € - max;(||c;||® + w;).

Proof. The winner at impression x is i*(x) = arg min,[[|x — ¢;||*~w;]. By the Johnson-Lindenstrauss
lemma [Johnson and Lindenstrauss, |1984], for any fixed pair of points x, ¢;, the random projection
preserves the squared distance:

(1 —e) |l = eif|* < [|Thx — Heg|* < (1 +¢) [x — el (28)
with probability at least 1 — 2 exp(—ce?m) for a universal constant ¢ > 0.
The power diagram score for advertiser i at impression X is s;(x) = ||x — ¢;]|*—w;. The projected
score is §;(x) = || IIx — ITc;||* — w;. The distortion in score is:
135(x) = 8i(x)| = | [|TIx — Tegl|* — [l — e * | < e [lx — e (29)

For the projected winner to agree with the true winner, it suffices that the distortion does not
flip any pairwise comparison. For advertisers ¢ and j with s;(x) < sj(x) (so ¢ beats j at x), we need
5i(x) < 8;(x). This holds if:

55(%) = si(%) > 2emax(||x — ¢il*, [Ix — ¢|°), (30)

which is guaranteed when the score gap exceeds ¢ - max;(||c;||* + w;) (a bound on the maximum
squared distance in the domain).

Taking a union bound over all (];f ) pairs of advertisers, and choosing m = O(log N/e?), the
failure probability is at most (];7) -2exp(—ce?m) < 1/N.

The target dimension m = O(log N/e?) is independent of the ambient dimension d, making the
approach tractable for arbitrarily high-dimensional embedding spaces. In practice, the projection
can be computed once and applied to all impressions. O
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6 Computational Aspects

Real-time ad auctions require winner determination in under 10ms. We analyze the full pipeline:
winner determination, payment computation, and practical approximations.

Proposition 6.1 (Winner Determination Complexity). 1. Isotropic, shared o: Winner de-
termination is equivalent to weighted nearest-neighbor search. Using a kd-tree or ball tree with
N advertisers, query time is O(log N) with O(N log N) preprocessing (lree construction).

2. Isotropic, varying o;: Requires evaluating all N score functions. Brute-force is O(N); with
preprocessing (e.g., spatial hashing), amortized O(log N) is achievable.

3. Anisotropic: O(N) worst-case per query. No sub-linear exact algorithm is known for weighted
nearest-neighbor under Mahalanobis distances.

4. Mizture of Gaussians with K total components: O(K) per query using the virtual
advertiser decomposition.

Proof. Part 1: The power diagram score s;(x) = ||x — ¢;||* — w; is a shifted squared Euclidean
distance. As shown by |Aurenhammer| [1987], this can be reduced to standard nearest-neighbor

search in R%! by the lifting map ¢; — (i, 1/]/cil> — w;). A kd-tree over the N lifted sites answers
queries in O(log N) expected time, with O(N log N) construction time.

Part 2: With varying o, the score s;(x) = [|x — ¢4||* /o2 — logb; is no longer a shifted squared
distance. Brute-force evaluation of all N scores takes O(Nd) time. Spatial hashing with locality-
sensitive hashing (LSH) can provide O(log N) amortized time by maintaining hash tables for differ-
ent o; scales.

Parts 3—4: Anisotropic scores involve Mahalanobis distances with different metrics per advertiser,
precluding standard nearest-neighbor data structures. The mixture case reduces to Part 3 with K
virtual advertisers. O

Payment computation. Exact VCG payments (Equation (7)) require computing the (N — 1)-
advertiser power diagram for each advertiser ¢ and integrating over the resulting cells. Two ap-
proaches are available.

Per-impression payment. For a single impression x allocated to winner ¢*, the VCG payment
equals the externality imposed on other advertisers. In the single-impression case, this simplifies to
the value of the second-highest advertiser j* at x: p(x) = v;«(x), since the runner-up loses exactly
vj=(x) of welfare when i* is present. Computing j* requires a second weighted nearest-neighbor
query (excluding ¢*) in O(log N) time.

Aggregate payment. For computing total payments over a batch of impressions, one must rebuild
the kd-tree excluding each winner and requery all impressions in the winner’s territory. With N ad-
vertisers, this requires N auxiliary kd-trees, each built in O(N log N) time. The total preprocessing
is O(N?log N), amortized over many impression queries.

Proposition 6.2 (Second-Score Payment Approximation). For the isotropic model, define the
second-score payment for impression X as p(x) = vj«(x), where j* = argmax; ;- v;j(x) is the
second-highest-value advertiser. Then:

1. p(x) is a per-impression payment that coincides with the VCG per-impression payment.

14



Algorithm 1 Full Auction: Winner Determination and Payment

Require: Impression x € R?, advertisers {(c;,b;,0)}Y, kd-tree T, auxiliary kd-trees {7 *}&
(optional, for exact VCG)

Ensure: Winner index ¢*, payment p

// Winner determination: O(log N) via kd-tree

w; < o2 logb; for all 4

i* <— WeightedNearestNeighbor(7, x) > Returns arg min;[||x — ¢;||* — w;]

// Payment computation (exact VCG):

Option A: Per-impression VCG payment.

Score si+ + ||x — ¢i+||* — wi-

Find second-best: j* < WeightedNearestNeighbor(7 \ {i*},x) > O(log N)
Score s« + ||x — cj||* — w;-

p < exp(—sj«/0?) > = v;+(x): VCG externality

© 00 N O Ut W N

[
N = O

. Option B: Aggregate VCG payment (batch). o
: For batch of M impressions, compute p; = . ,,[W;" — W;] via Monte Carlo (Theorem

_ =
[S2 SN OV

: return (7%, p)

2. The aggregate second-score payment p; = sz i (2) (x) du(x) satisfies p; < pYc%

(2
1s the exact VCOG aggregate payment.

vea
, where p;

3. If advertisers are A-separated (meaning minj; |c; — c;|| > A), then:
%% = Bi < N - binax - exp(=A%/(407)) - p(X), (31)
where byax = max; b;.

Proof. Part 1. For a single impression x allocated to ¢*, removing ¢* from the auction causes x to be
reallocated to j* = arg max;_;« v;(x). The welfare of others changes by exactly vj«(x) — 0 = v;+(x)
(advertiser j* gains the impression). Hence the per-impression VCG externality is v;=(x).

Part 2. The aggregate VCG payment p)“% = Z#i[fv__i vjdp — fvj vj dp) accounts for the
J -

reallocation of all impressions in V; (and the ripple effects on other cells) when i is removed. The
second-score payment only accounts for the local reallocation to the runner-up at each point, ignoring
the fact that removing ¢ may shift boundaries between other cells (the “cascade effect”). Since the
cascade can only increase others’ welfare further, p; < pZVCG.

Formally, when ¢ is removed, each impression x € V; is reallocated, and this may shift the

boundaries of other cells. The total welfare gain of others is:

pyee _ /V 0520 () du(x)+z /vv—i\v- v;(x) du(x) /V-\V-_i v;(x) du(x)] . (32)

JF#i
>0 (cascade effect)

=p;

The cascade term is non-negative because {VJ_Z} is the welfare-maximizing allocation for the N —1
advertisers.

Part 3. When advertisers are A-separated, the cascade effect is small. Removing advertiser 4
only significantly affects cells V; that share a boundary with V;. On the shared boundary H;;, vi(x) =
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v;(x), and for points deep inside V; (distance > A/2 from V;), the value v;(x) < b; exp(—A2%/(40?))
is exponentially small. The total cascade effect across all N — 1 other advertisers is bounded by
N - buax - exp(—A2/(402)) - u(X). O

For the isotropic case with shared o, the winner at point x is:

i* = argmin |||x — ¢;||* — 6% log b; | , (33)
i
which is a standard weighted nearest-neighbor query with weights w; = o2 log b;.

7 Budget Pacing and Spend Prediction

A key challenge for advertisers is predicting their spend, which depends on the geometry of all
competitors’ bids. Under exact VCG, advertiser ¢’s payment is given by . For budget forecasting,
a useful upper bound is the proportional spend S; = b; - 1(V;), which dominates both the value
received and the VCG payment (since v;(x) < b; for all x, and py““ < sz v dp < S; by IR):

pYCE <8 = b, / dp(x), (34)
Vi

where V; depends on all advertisers’ parameters. We bound the estimation error of pu(V;), which
controls the error of S; and hence of VCG payment upper bounds.

Theorem 7.1 (Budget Prediction Bound). Let S'Z.(M) be the Monte Carlo estimate of S; using M
samples from p:

M
Z x™ eV, x™ ~p (35)
Then for any € > 0:
- 2M €
IP[|S§M) — S| > e} < 2exp<— b; ) . (36)

In particular, M = O(b?/e? -1og(1/6)) samples suffice for e-accuracy with probability 1 — 4.

Proof. S'Z-(M) = %Zi\le Zm where Z,, = 1[x(™) € V;] are ii.d. Bernoulli with mean u(V;). By
Hoeffding’s inequality applied to ji; = ﬁ > Zm:

Pl|bifii — bips(Vi)| > € = Pl — p(Vi)| > €/b] < 2exp(—2M € /b). O

Bid landscape tool. Using Theorem an ad platform can provide advertisers with a “bid
landscape”™: for a proposed bid b;, estimate the resulting territory V;, expected impressions p(V;),
and spend S;, with confidence intervals. Recomputing the power diagram for different bid values
takes O(N) time (rebuild the spatial index), and Monte Carlo estimation takes O(M) per query.

Dynamic budget pacing. When bids change over time, territories shift. We draw an analogy
to competitive facility location: each bid change is equivalent to a facility adjusting its “attractive
radius.” Smooth bid adjustments lead to smooth territory changes (by continuity of the power
diagram in the weights), enabling gradient-based budget pacing algorithms.
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8 Experiments
We compare three auction mechanisms on synthetic data across dimensionalities d € {2, 5, 10,20}:

1. GSP-Discretized (GSP-Disc): Partition X into a grid of 10¢ cells (for d < 5; for d > 5,
project to d = 5 via random projection before discretizing). Run generalized second-price
auctions independently per cell: each impression pays the second-highest score at that point,
converted to value space.

2. VCG-Discretized (VCG-Disc): Same grid partition and projection, but with per-impression
VCG payments computed by re-running the auction without each winning bidder.

3. Power-Diagram-Native (Power-VCG): Our proposed mechanism—welfare-maximizing
allocation via power diagram with exact VCG payments in continuous space.

8.1 Setup

For each dimensionality d and each of 30 random seeds, we generate:

e N = 20 advertisers with centers sampled uniformly in [0, 1]¢, bids drawn from LogNormal(u =
1,0 = 0.5), and reach parameters o; ~ Uniform(0.1,0.4) - v/d (scaling by v/d to maintain
meaningful overlap as dimensionality increases).

e Impression distribution p: mixture of 5 isotropic Gaussians with random centers and Dirichlet-
distributed weights.

e 50,000 impressions sampled from p per trial.

e Discretized methods use 10 cells per dimension for d < 5. For d > 5, impressions are first
projected to d’ = 5 via Johnson-Lindenstrauss random projection (Theorem [5.3) before dis-
cretization, as 10¢ cells is infeasible.

IC regret is computed by testing bid deviations at multipliers {0.5,0.8,1.2,1.5,2.0, 3.0} for each
advertiser and reporting the maximum per-impression utility gain, averaged across advertisers and
seeds.

8.2 Metrics

e Social welfare: W = ﬁ eru Uy (x)(X), averaged per impression.

e Platform revenue: R = ﬁ >, i, averaged per impression.

IC regret: maxy [u;(b;) — u;(b;)], maximized over bid deviations, averaged over advertisers.

Latency: Wall-clock time for winner determination per impression (us).

Budget accuracy: + >, |S; — Si|/S; for Monte Carlo budget estimates with M samples.

8.3 Results

Table 2 presents the main results. We make the following observations.
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Table 2: Comparison of auction mechanisms across dimensionalities (N = 20 advertisers, 50K
impressions, 30 seeds). Values are mean + std. Power-VCG achieves the highest welfare at all
d, with the gap widening dramatically as dimensionality increases. IC regret is exactly zero for

Power-VCG and grows large for discretized methods at d > 10.

d Mechanism Welfare Revenue IC Regret
GSP-Disc 3.885+1.158  2.721+0.671  0.011 £ 0.020
2 VCG-Disc 3.885 +1.158  2.682+0.668 0.011 & 0.020
Power-VCG 3.913+1.156 2.696 +0.671 <1076
GSP-Disc 2.574+0.753  1.775+0.363  0.054 + 0.051
5 VCG-Disc 2.574+0.753  1.762+0.363  0.045 + 0.056
Power-VCG 2.584 +0.751 1.766 + 0.363 <1076
GSP-Disc 1.483 +£0.926  1.728 +0.443  1.013 +1.363
10 VCG-Disc 1.483 +£0.926  1.2894+0.515 2.176 + 2.598
Power-VCG 2.040 +0.754 1.494 + 0.389 <1076
GSP-Disc 1.367 £0.760  1.4234+0.310  0.045 &+ 0.043
20 VCG-Disc 1.367 £ 0.760  0.899 4+ 0.467 1.613 + 3.068
Power-VCG 1.807 +£0.593 1.242 + 0.262 <1076

Welfare gap widens with dimensionality (Figure . At d = 2, the welfare advantage of
Power-VCG over discretized methods is modest (+0.7%): a 10 x 10 grid provides adequate resolution
in two dimensions. However, the gap grows rapidly: 4+0.4% at d = 5, +37.5% at d = 10, and
+32.2% at d = 20. This is the core argument for continuous-space mechanisms—discretization
degrades catastrophically in high dimensions because the number of grid cells grows exponentially
while the number of impressions per cell shrinks, destroying local allocation quality.

Revenue is nuanced (Figure [2). GSP-Disc can generate higher revenue than Power-VCG at
moderate dimensions (e.g., $2.72 vs. $2.70 at d = 2) because GSP overcharges winners—it is not
incentive-compatible. At high dimensions, GSP revenue remains inflated relative to welfare ($1.42
revenue on $1.37 welfare at d = 20), while VCG-Disc revenue collapses ($0.90 at d = 20) as the coarse
allocation misidentifies welfare contributions. Power-VCG provides balanced, welfare-proportional
revenue: $1.49 at d = 10 and $1.24 at d = 20.

IC regret: zero vs. explosive (Figure . Power-VCG achieves IC regret below 1076 (nu-
merical precision floor) at every dimensionality, confirming Theorem . Discretized methods have
small but nonzero regret at d = 2 (~ 0.01), which explodes at d > 10: VCG-Disc reaches regret
of 2.18 at d = 10 and 1.61 at d = 20, meaning advertisers can more than double their utility by
misreporting bids. The discretization boundary artifacts create profitable deviations: an advertiser
whose optimal territory straddles a cell boundary can exploit the grid misalignment.

Latency: kd-tree scales sub-linearly in N (Figure . At d = 2, winner determination via
kd-tree indexing takes ~0.15 us per impression, independent of the number of advertisers N (tested
up to N = 100). Brute-force search scales linearly, reaching ~ 1.1 us at N = 100. Both are well
within the 10ms real-time constraint. Note that kd-tree performance degrades in high dimensions;
for d > 20, the JL projection of Theorem reduces the effective dimension before spatial indexing.
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Social Welfare vs. Dimensionality
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Figure 1: Social welfare vs. dimensionality. Power-VCG (blue) dominates at all d; the gap widens
dramatically at d > 10 as grid-based discretization degrades.

Budget prediction follows O(1/v M) (Figure . Monte Carlo budget estimates using M
impression samples achieve relative error that tracks the theoretical O(1/v/ M) bound from Theo-
rem precisely. At M = 10,000 samples, the mean relative budget error falls below 3%.

Territory visualization (Figure @ Figure @ shows a side-by-side comparison of discretized
(5 x 5 grid) vs. continuous power diagram allocation for 8 advertisers in R2. The discretized
allocation exhibits blocky boundaries and misallocated border regions; the power diagram produces
smooth, geometrically natural boundaries where advertiser territories meet at curves of equal bid-
adjusted distance.

9 Discussion

Connection to OpenAl’s deployment. OpenATl’s “intent-based monetization” naturally maps
to our framework: user intent is encoded in conversation embeddings, and ads are matched based on
proximity in this space. Our experiments show that discretization loses 32-38% of social welfare at
d>10 (Table, suggesting that even moderate-dimensional embedding spaces benefit substantially
from continuous-space mechanisms.

Generative ads. In LLM platforms, ad creative can be generated dynamically based on the

impression’s position in embedding space. A running shoe ad near a “beginner marathon training”
conversation would differ from one near a “competitive ultrarunning” conversation. This is equivalent
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Platform Revenue vs. Dimensionality
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Figure 2: Platform revenue vs. dimensionality. GSP-Disc generates inflated revenue by overcharging
(not IC). VCG-Disc revenue collapses at d > 10 as coarse allocation misidentifies welfare contribu-
tions. Power-VCG provides balanced, welfare-proportional revenue.

to the ad creative being a function of position—a natural extension where each advertiser’s territory
in the power diagram also maps to a creative strategy.

Privacy implications. FEmbedding-based targeting encodes user state more richly than keywords.
While this enables better matching, it also raises privacy concerns. Power diagrams offer a potential
advantage: the advertiser sees only the territory they win, not the underlying embeddings. The
platform can mediate targeting without revealing user-level data.

Limitations. Our framework assumes: (i) advertisers can specify Gaussian-family value functions,
which may not capture all preference structures (though Theorem shows Lipschitz functions
can be approximated); (ii) the impression distribution p is known or well-estimated, whereas in
practice it shifts over time; (iii) advertiser interactions are captured solely through the allocation (no
externalities from neighboring ads); (iv) exact VCG payments require per-impression computation
of the second-best advertiser, or batch recomputation of (N — 1)-advertiser diagrams (Section []).
High-dimensional power diagram computation remains challenging beyond d =~ 20 with current
algorithms, though Theorem shows that random projection to O(log N/e?) dimensions preserves
the allocation, making high-dimensional deployment feasible in practice.
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Incentive Compatibility Regret vs. Dimensionality
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Figure 3: IC regret vs. dimensionality (log scale). Power-VCG achieves machine-precision zero at
all d. Discretized VCG regret exceeds 1.0 at d > 10—advertisers can more than double their utility
by deviating.

10 Conclusion

We have introduced a geometric framework for ad auctions in continuous embedding spaces based
on power diagrams. The main contributions are:

1. A reduction of the continuous-space mechanism design problem to computational geome-
try: the welfare-maximizing allocation is a power diagram, and the unique IC, IR, welfare-
maximizing mechanism computes payments via Voronoi cell integration (Theorem [3.3)).

2. A characterization of strategic geometry: exact VCG is IC for the full type space including
center reports (Theorem , Theorem , but under approximate payment rules, the value-
received gradient (Theorem points toward high-density impression regions, quantifying
the vulnerability of practical mechanisms to spatial manipulation.

3. Convergence of bid dynamics to the unique Nash equilibrium in N rounds under VCG (The-
orem [3.8)), contrasted with cycling under GSP (Theorem [3.9).

4. Dimensionality reduction via Johnson—Lindenstrauss projections that preserve the allocation
in O(log N) dimensions (Theorem [5.3]).

5. Efficient O(log N) winner determination and payment computation, with practical approxi-
mation bounds for well-separated advertisers (Theorem [6.2]).

6. Budget prediction bounds via Monte Carlo integration (Theorem .
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Winner Determination Latency vs. Advertisers
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Figure 4: Winner determination latency vs. number of advertisers (d = 2). Kd-tree indexing is flat
at ~0.15 us; brute force scales linearly.

7. A path from simple (isotropic) to expressive (mixture) preference models, with approximation
guarantees that improve under low intrinsic dimensionality (Theorem , Theorem .

As LLM platforms become major advertising venues, the mechanism design challenges we ad-
dress will become increasingly relevant. The tools from computational geometry—power diagrams,
Voronoi tessellations, and spatial indexing—provide a natural and provably sound foundation for
this new generation of ad auctions. The key message is that continuous embedding spaces need
not be discretized: the power diagram structure provides exact, efficient, and incentive-compatible
mechanisms for the native geometry of these spaces.
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