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Abstract

The shift from keyword-based to embedding-based ad targeting in large language model
platforms creates a fundamental challenge: advertisers must bid on regions of continuous, high-
dimensional space rather than discrete keywords. We propose a geometric framework based
on power diagrams (additively weighted Voronoi tessellations) where each advertiser's terri-
tory in embedding space is determined by their bid-weighted proximity. Our main theoret-
ical contribution is establishing that, for isotropic Gaussian value functions over a continu-
ous impression space, the welfare-maximizing allocation is a power diagram, and the unique
incentive-compatible, individually rational, welfare-maximizing mechanism computes payments
via Voronoi cell integration�reducing the mechanism design problem to a computational geom-
etry problem (Theorem 3.3). We characterize the geometry of strategic behavior: under exact
VCG, center misreporting never helps (Theorem 3.6), but under approximate payment rules,
the gradient of value received points toward high-density regions of the impression distribution
(Theorem 3.5), quantifying the vulnerability of practical mechanisms to spatial manipulation.
We prove that best-response bid dynamics converge to the unique Nash equilibrium in N rounds
(Theorem 3.8), and show that random projections to O(logN/ε2) dimensions preserve the al-
location (Theorem 5.3), making high-dimensional deployment tractable. Experimentally, we
compare power-diagram-native auctions against discretized baselines (GSP and VCG on IAB-
style category grids) across d ∈ {2, 5, 10, 20}. At d = 2, all mechanisms perform similarly, but
the welfare gap widens dramatically with dimensionality: Power-VCG achieves 37% higher social
welfare than discretized baselines at d = 10 and 32% at d = 20, while maintaining exactly zero
IC regret (versus regret exceeding 1.0 for discretized VCG at d ≥ 10). Winner determination
via kd-tree indexing runs in ∼0.15µs per impression, independent of the number of advertisers,
meeting real-time latency requirements.

1 Introduction

Online advertising has been built on discrete auction mechanisms. In Google's search advertising,
the fundamental biddable unit is a keyword : advertisers bid on �running shoes� or �mesothelioma
lawyer,� and a second-price-like auction clears e�ciently for each query. This discrete structure
enables clean market mechanics�winner determination, truthful bidding incentives, and tractable
budget forecasting.

The emergence of large language model (LLM) platforms as advertising venues disrupts this
foundation. OpenAI announced in January 2026 that it would begin testing advertisements in
ChatGPT, describing their approach as �intent-based monetization� across 800 million monthly
users [OpenAI, 2026]. Similar e�orts are underway at Perplexity and other conversational AI plat-
forms.
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In these systems, user interactions are not represented as keywords but as points in continuous,
high-dimensional embedding spaces. A user's conversation traces a trajectory through this space, and
an advertising �impression� corresponds to a point encoding semantic content, user intent, temporal
context, and other dimensions simultaneously. Advertisers do not want individual keywords�they
want regions of this space.

This paper introduces a geometric framework for ad auctions in continuous embedding spaces.
Our key insight is that when advertiser value functions are modeled as functions of distance in
embedding space, the natural allocation mechanism is a power diagram�an additively weighted
Voronoi tessellation where bids determine territory boundaries.

Contributions.

1. We formalize the embedding-based ad auction problem, de�ning impression spaces, advertiser
value functions, and allocation mechanisms in continuous space (Section 2).

2. For the isotropic Gaussian case, we prove the welfare-maximizing allocation is a power diagram
and that the mechanism with VCG payments computed via Voronoi cell integration is the
unique IC, IR, welfare-maximizing mechanism�reducing mechanism design to computational
geometry (Section 3, Theorem 3.3).

3. We characterize the geometry of strategic behavior: exact VCG is fully IC for center reports
(Theorem 3.6), but under approximate payment rules, the value-received gradient (Theo-
rem 3.5) quanti�es vulnerability to spatial manipulation�advertisers are incentivized to shift
toward high-density impression regions.

4. We prove that best-response bid dynamics converge to the unique Nash equilibrium in N
rounds (Theorem 3.8), and contrast this with cycling under GSP (Theorem 3.9).

5. We extend the framework to anisotropic preferences with quadric boundaries (Section 4) and
mixture-of-Gaussian preferences with virtual advertiser decomposition (Section 5).

6. We show that random projection to O(logN/ε2) dimensions preserves the power diagram
allocation (Theorem 5.3), making high-dimensional deployment tractable.

7. We provide O(logN) winner determination and payment computation via spatial indexing,
with a full auction algorithm (Section 6).

8. We give budget prediction bounds via Monte Carlo estimation (Section 7).

9. We experimentally validate the framework against discretized baselines, showing consistent
improvements in welfare and revenue (Section 8).

Related work. Our work bridges several lines of research. We describe each precisely to clarify
our contribution.

Mechanism design for LLMs. Dütting et al. [2024b] model LLM interactions as sequential token-
level decisions and design mechanisms for selecting which tokens to monetize; their allocation unit is
a token or token sequence. Hajiaghayi et al. [2024] propose RAG-based ad auctions where retrieved
documents carry ads and the mechanism selects which documents to surface; the biddable unit
is a document slot in the retrieval pipeline. Xu et al. [2026] model genre-based bidding for LLM-
generated responses, discretizing the ad space into a �xed set of content genres. Banchio et al. [2025]
study ads in conversational settings with a focus on user experience externalities across turns. Our
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model operates at the impression level: each conversation maps to a point in continuous embedding
space, and the mechanism allocates that point to an advertiser via geometric partitioning. The key
di�erence is that token-level and slot-level mechanisms cannot express spatial competition between
advertisers over regions of semantic space, which is the central object of our framework.

Optimal transport and mechanism design. Daskalakis et al. [2013] establish that optimal multi-
item auction design with continuous buyer types can be cast as an optimal transport problem,
yielding characterizations of revenue-optimal mechanisms. Their framework applies to a single
buyer with multidimensional types. Our setting di�ers: we have N buyers (advertisers) competing
over a continuum of items (impressions), and we seek welfare-maximizing rather than revenue-
optimal mechanisms. The connection is conceptual�both exploit continuous-space structure�but
the technical tools di�er: we use power diagrams rather than optimal transport duality.

Computational geometry of auctions. Joswig et al. [2024] characterize the polyhedral structure
of the set of all truthful auction mechanisms for �nite type spaces, showing it forms a polytope
whose vertices correspond to extremal mechanisms. Our work is complementary: we show that
for a speci�c class of continuous-type auctions (Gaussian values in embedding space), the welfare-
maximizing mechanism has the geometric structure of a power diagram [Aurenhammer, 1987],
enabling e�cient computation. Power diagrams have not previously been connected to ad auction
design.

Neural auction design. Dütting et al. [2024a] learn approximately optimal (revenue-maximizing)
auction rules via deep networks, training on sampled bidder valuations. Liu et al. [2021] deploy
learned auction mechanisms at Alibaba, jointly optimizing allocation and payment rules. These
approaches learn the auction mechanism end-to-end but treat the targeting problem (which ad is
relevant to which user) as exogenous. Our framework uni�es targeting and auction design: the power
diagram simultaneously determines relevance (geometric proximity) and allocation (cell member-
ship), with provable incentive guarantees that learned mechanisms lack.

Industry practice. Current contextual advertising discretizes embedding spaces into taxonomies
(IAB's ∼700 content categories) and runs standard real-time bidding (RTB) auctions indepen-
dently per cell [Seedtag, 2025, GumGum/Verity, 2024]. This discretization discards the continuous
structure of embeddings: two impressions on opposite sides of a category boundary may be nearly
identical in embedding space yet participate in entirely di�erent auctions. Our power diagram ap-
proach operates directly on the continuous space, eliminating boundary artifacts and capturing the
full geometric structure of advertiser competition.

2 Model

De�nition 2.1 (Impression Space). Let X ⊆ Rd be a compact convex set representing the embedding

space. Points x ∈ X represent impressions�user interactions projected into embedding space. The

impression distribution µ is a probability measure on X representing the density of user tra�c.

De�nition 2.2 (Advertiser). An advertiser i ∈ [N ] = {1, . . . , N} is characterized by:

� A center ci ∈ X (their ideal customer embedding),

� A bid scalar bi ∈ R>0 (willingness to pay),

� A value function vi : X → R≥0 parameterized by the above.

De�nition 2.3 (Allocation). An allocation is a measurable partition {V0, V1, . . . , VN} of X , where
Vi is the set of impressions allocated to advertiser i, and V0 is the unallocated set (reserved, e.g.,

for policy exclusions).
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The social welfare of an allocation is:

W ({Vi}) =
N∑
i=1

∫
Vi

vi(x) dµ(x). (1)

The welfare-maximizing allocation assigns each impression to the advertiser who values it most:

i∗(x) = argmax
i∈[N ]

vi(x). (2)

De�nition 2.4 (Payment Rule). A payment rule p = (p1, . . . , pN ) speci�es each advertiser's total

payment. A mechanism ({Vi}, p) is incentive compatible (IC) if truthful reporting of type parameters
(bid bi, center ci, and covariance Σi as applicable) is a dominant strategy for each advertiser.

We consider three increasingly expressive parameterizations of vi:

Isotropic Gaussian. vi(x) = bi · exp
(
−∥x−ci∥2

σ2
i

)
, where σi > 0 is a reach parameter. When

σi = σ for all i (shared reach), the allocation problem has power diagram structure.

Anisotropic Gaussian. vi(x) = bi · exp
(
−(x− ci)

⊤Σ−1
i (x− ci)

)
, where Σi ≻ 0 is a covariance

matrix encoding directional preferences.

Mixture of Gaussians. vi(x) = bi ·
∑Ki

k=1wik · exp
(
−(x− cik)

⊤Σ−1
ik (x− cik)

)
, representing mul-

timodal preferences.

Notation summary. Table 1 collects the notation used throughout the paper.

3 Isotropic Case: Power Diagrams

We �rst analyze the case where all advertisers share a common reach parameter σ > 0, so vi(x) =
bi · exp(−∥x− ci∥2 /σ2).

Lemma 3.1 (Log-value characterization). The welfare-maximizing allocation assigns impression x
to i∗(x) = argmaxi vi(x). Since exp(·) is monotone and σ is shared:

i∗(x) = argmax
i∈[N ]

[
log bi −

∥x− ci∥2

σ2

]
. (3)

This is precisely the de�nition of a power diagram (additively weighted Voronoi diagram) with
sites ci and weights wi = σ2 log bi.

De�nition 3.2 (Power Diagram). Given sites c1, . . . , cN ∈ Rd and weights w1, . . . , wN ∈ R, the
power diagram is the partition {V1, . . . , VN} where:

Vi =
{
x ∈ X : ∥x− ci∥2 − wi ≤ ∥x− cj∥2 − wj ∀j ̸= i

}
. (4)

The boundary between cells Vi and Vj is the hyperplane:

Hij =
{
x : ∥x− ci∥2 − wi = ∥x− cj∥2 − wj

}
=
{
x : 2(cj − ci)

⊤x = ∥cj∥2 − ∥ci∥2 − wj + wi

}
.

(5)
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Table 1: Summary of notation.

Symbol Meaning

X ⊆ Rd Impression (embedding) space
x ∈ X A single impression
µ Impression distribution (probability measure on X )
N Number of advertisers
ci ∈ X Center of advertiser i (ideal customer embedding)
bi ∈ R>0 Bid scalar of advertiser i
σ, σi Reach parameter(s) (isotropic Gaussian bandwidth)
Σi ≻ 0 Covariance matrix of advertiser i (anisotropic case)
vi(x) Value of impression x to advertiser i
wi = σ2 log bi Power diagram weight for advertiser i
Vi Power diagram cell (territory) of advertiser i

V −i
j Cell of advertiser j in the diagram computed without i

W ({Vi}) Social welfare of allocation {Vi}
pi Payment of advertiser i
ui Utility of advertiser i: value received minus payment
Hij Hyperplane boundary between cells Vi and Vj

Ki Number of mixture components for advertiser i
wik Mixture weight for component k of advertiser i
Bi Budget of advertiser i

Theorem 3.3 (Power Diagram Mechanism: Uniqueness, IC, and IR). Consider N advertisers with

isotropic Gaussian value functions sharing a common reach parameter σ > 0, over a continuous

impression space (X , µ). De�ne the power diagram mechanismM = ({Vi}, p) as follows:

1. Allocation. The allocation is the power diagram with sites ci and weights wi = σ2 log bi:

Vi =
{
x ∈ X : ∥x− ci∥2 − wi ≤ ∥x− cj∥2 − wj ∀j ̸= i

}
. (6)

2. Payment. Each advertiser i pays the VCG externality, computed via Voronoi cell integration:

pi =
∑
j ̸=i

∫
V −i
j

vj(x) dµ(x)−
∑
j ̸=i

∫
Vj

vj(x) dµ(x), (7)

where {V −i
j }j ̸=i is the power diagram computed on the N − 1 advertisers excluding i.

ThenM satis�es:

(a) Welfare maximization. {Vi} maximizes social welfare W ({Vi}) =
∑

i

∫
Vi
vi(x) dµ(x) over

all measurable partitions of X .

(b) Incentive compatibility. Truthful bid reporting is a dominant strategy: for each i and any

misreport b′i ̸= bi, ui(bi) ≥ ui(b
′
i).

(c) Individual rationality. Every advertiser has non-negative utility: ui ≥ 0 for all i.

(d) Uniqueness. M is the unique mechanism (up to tie-breaking on measure-zero sets) that

simultaneously satis�es welfare maximization, IC, and IR, among mechanisms where payments

do not depend on advertiser i's own report beyond the allocation.
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Proof. We establish each claim. The core contribution is showing that the continuous-space mecha-
nism design problem reduces to a computational geometry problem: welfare maximization becomes
power diagram construction, and payment computation becomes Voronoi cell integration.

Part (a): Welfare maximization. The welfare-maximizing allocation assigns each impression
pointwise to the highest-value advertiser: i∗(x) = argmaxi vi(x). For isotropic Gaussians with
shared σ, we have vi(x) = bi exp(−∥x− ci∥2 /σ2). Since exp(·) is strictly monotone and σ is
shared:

i∗(x) = argmax
i

[
log bi − ∥x− ci∥2 /σ2

]
= argmin

i

[
∥x− ci∥2 − σ2 log bi

]
. (8)

This is precisely the de�nition of the power diagram with sites ci and weights wi = σ2 log bi [Auren-
hammer, 1987]. The reduction from welfare maximization to power diagram construction is exact:
no approximation or discretization is involved. The partition {Vi} de�ned by (6) implements the
pointwise maximum, hence maximizes welfare.

Part (b): Incentive compatibility. We adapt the VCG argument [Vickrey, 1961, Clarke,
1971, Groves, 1973] to the continuous-impression setting. Write advertiser i's utility under truthful
reporting:

ui(bi) =

∫
Vi

vi(x) dµ(x)− pi

=

∫
Vi

vi(x) dµ(x)−
[∑
j ̸=i

∫
V −i
j

vj(x) dµ(x)−
∑
j ̸=i

∫
Vj

vj(x) dµ(x)

]

=
N∑
j=1

∫
Vj

vj(x) dµ(x)︸ ︷︷ ︸
=W ({Vk})

−
∑
j ̸=i

∫
V −i
j

vj(x) dµ(x)︸ ︷︷ ︸
hi (independent of i's report)

. (9)

The term hi =
∑

j ̸=i

∫
V −i
j

vj(x) dµ(x) depends only on the other advertisers' types and is indepen-

dent of i's reported bid. Hence i maximizes ui by maximizing W ({Vk}). Since the allocation rule
already maximizes W when i reports truthfully, any misreport b′i ̸= bi can only decrease W (or leave
it unchanged), so ui(bi) ≥ ui(b

′
i).

Part (c): Individual rationality. We must show ui ≥ 0. By (9), ui = W ({Vk})− hi, where
W ({Vk}) is the maximum welfare with all N advertisers and hi is the maximum welfare achievable
by the N − 1 advertisers excluding i. Adding advertiser i to the market can only increase (or
maintain) welfare, since one could always allocate nothing to i and recover the (N − 1)-advertiser
optimum. Formally, W ({Vk}) ≥

∑
j ̸=i

∫
V −i
j

vj(x) dµ(x) = hi because {V −i
j }j ̸=i ∪{V −i

0 } is a feasible
(but not necessarily optimal) partition when i is present (assigning V −i

0 ∪ V −i
i as unallocated or

redistributed). Hence ui ≥ 0.
Part (d): Uniqueness. By the Green�La�ont characterization [Green and La�ont, 1977],

in quasi-linear environments where the social choice function maximizes the sum of valuations, the
Groves class of payment rules is the unique class that implements the e�cient allocation in dominant
strategies. The VCG mechanism (with hi depending only on others' reports) is the unique member
of the Groves class that additionally satis�es IR. The only degree of freedom is tie-breaking, which
a�ects a measure-zero set of impressions (the power diagram boundaries Hij) and hence does not
a�ect utilities or payments under any absolutely continuous µ.

Computational reduction. The signi�cance of Parts (a)�(d) is that they reduce the mecha-
nism design problem entirely to computational geometry: (i) welfare-maximizing allocation reduces
to constructing a power diagram, which is a standard O(N logN) operation [Aurenhammer, 1987];
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(ii) payment computation reduces to integrating over Voronoi cells�speci�cally, computing hi re-
quires constructing the (N − 1)-advertiser power diagram and integrating vj over each cell V −i

j .
In the isotropic case with shared σ, these integrals involve Gaussian densities over polyhedral re-
gions, which can be computed via Monte Carlo sampling or, in low dimensions, exact polyhedral
integration.

Remark 3.4 (Heterogeneous reach). When σi varies across advertisers, the allocation is still

welfare-maximizing via (2), but boundaries are no longer hyperplanes. The cell Vi is de�ned by:

Vi =

{
x : log bi −

∥x− ci∥2

σ2
i

≥ log bj −
∥x− cj∥2

σ2
j

∀j

}
,

which gives quadric (conic) boundaries. Theorem 3.3 parts (b)�(d) still hold: the VCG argument

in (9) does not depend on the geometric structure of the cells, only on the pointwise welfare-

maximization property of the allocation. The computational reduction to power diagrams, however,

requires shared σ.

3.1 Incentive Compatibility for Center Reports

Theorem 3.3 establishes IC with respect to bid misreporting. Theorem 3.6 (below) shows that exact
VCG is also IC for center reports. However, practical mechanisms often use approximate payments
(Theorem 6.2). The following theorem characterizes the geometry of value-received sensitivity to
center perturbations, which becomes exploitable under approximate payment rules.

Theorem 3.5 (Value-Received Gradient for Center Perturbations). Consider the isotropic Gaussian
model with N ≥ 2 advertisers, shared reach σ, and VCG payments. Under any payment rule where

the payment to advertiser i does not fully adjust to compensate for center misreporting (including the
second-score approximation of Theorem 6.2 and GSP), there exist con�gurations where an advertiser

can strictly increase utility by misreporting their center.

Moreover, the utility gain from an in�nitesimal center misreport c′i = ci + εd (with ∥d∥ = 1) is:

∂ui
∂ci

∣∣∣∣
c′i=ci

· d =

∫
∂Vi

[
vi(x)− vj(i,x)(x)

]∂H
∂ci
· d dµ∂(x) +

∫
Vi

∂vi
∂ci

(x) · d dµ(x), (10)

where ∂Vi is the boundary of Vi, j(i,x) is the neighboring advertiser at boundary point x,
∂H
∂ci

is the

rate of boundary displacement, and dµ∂ is the induced boundary measure.

Under truthful reporting, vi(x) = vj(i,x)(x) on ∂Vi (by the power diagram construction), so the

�rst integral vanishes, and the gradient of value received with respect to center perturbation is:

∇ci

[∫
Vi

vi(x) dµ(x)

] ∣∣∣∣
truth

=
2

σ2

∫
Vi

bi exp
(
−∥x− ci∥2 /σ2

)
(x− ci) dµ(x). (11)

This gradient is zero if and only if ci is the vi-weighted centroid of Vi under µ, which generically

fails when µ is non-uniform. Under exact VCG, the payment adjusts to cancel this gradient (see

Theorem 3.6), but under approximate payment rules that do not fully internalize the externality,

this gradient drives pro�table center misreporting.

Proof. We prove each claim in turn.
Utility decomposition. Under the VCG mechanism, advertiser i's utility (from (9)) is ui =

W ({Vk})−hi. When i misreports center c′i, the platform computes the allocation using the reported
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center but i's true value is still vi(x) = bi exp(−∥x− ci∥2 /σ2). Let {V ′
k} denote the allocation

computed using c′i, and let W ′
true denote the true welfare under this allocation. Then:

ui(c
′
i) =

∫
V ′
i

vi(x) dµ(x)− pi(c
′
i), (12)

where pi(c
′
i) is the VCG payment computed using i's reported type (c′i, bi).

Value-received gradient computation. We compute the gradient of value received Vi =∫
Vi
vi(x) dµ(x) with respect to center perturbation. By the Leibniz integral rule for parameter-

dependent domains, the derivative has two contributions: (i) the change in vi within the �xed cell,
and (ii) the boundary movement. On the power diagram boundary ∂Vi∩∂Vj , we have vi(x) = vj(x)
(by the power diagram condition at the boundary, since the reported type is truthful). Therefore,
the boundary terms from expanding Vi and shrinking Vj cancel exactly in the total welfare W =
Vi +

∑
j ̸=i

∫
Vj

vj dµ. What remains is:

∇ciVi
∣∣
truth

=

∫
Vi

∇civi(x) dµ(x) =
2

σ2

∫
Vi

vi(x)(x− ci) dµ(x). (13)

Non-vanishing gradient. The value-received gradient vanishes if and only if:∫
Vi

vi(x)(x− ci) dµ(x) = 0 ⇐⇒ ci =

∫
Vi
vi(x)x dµ(x)∫

Vi
vi(x) dµ(x)

. (14)

That is, the gradient is zero if and only if ci equals the vi-weighted centroid of Vi under µ. For
generic non-uniform µ, the vi-weighted centroid of Vi di�ers from ci (it is pulled toward high-density
regions of µ), so the gradient is non-zero. Under any payment rule that does not fully adjust to
cancel this gradient (i.e., any rule other than exact VCG), center misreporting is pro�table.

Constructive example. Consider d = 1, N = 2, X = [−1, 1], σ = 1, b1 = b2 = 1, c1 = −0.3,
c2 = 0.3. Let µ be concentrated near x = 0.5 (e.g., µ = N (0.5, 0.12) restricted to X ). The
power diagram boundary is at x = 0 (midpoint, since bids are equal). Advertiser 1's territory is
V1 = [−1, 0], which contains little impression mass. By (11), the gradient ∇c1u1 points in the +x
direction (toward the density mass). If advertiser 1 misreports c′1 = −0.3 + δ for small δ > 0,
the boundary shifts rightward, capturing more of the high-density region around x = 0.5, and v1
evaluated at the newly captured points is computed using the true center, which is still reasonably
close. The net e�ect is a utility increase, veri�able by direct computation.

Corollary 3.6 (Full IC for Center Reports under VCG). Under exact VCG payments, the power

diagram mechanism is incentive compatible in the full type space (bi, ci) for any impression distri-

bution µ. That is, no advertiser can gain by misreporting either the bid bi or the center ci.

Proof. Under VCG, advertiser i's utility is ui = W ({Vk})−hi where hi is independent of i's report.
When i misreports c′i, the mechanism computes the allocation {V ′

k} using the reported type (c′i, bi).
The VCG payment to i is:

pi =
∑
j ̸=i

∫
V −i
j

vj(x) dµ(x)−
∑
j ̸=i

∫
V ′
j

vj(x) dµ(x), (15)

where {V −i
j } is the (N − 1)-advertiser diagram (independent of i's report) and the second sum uses

the reported allocation {V ′
j }. Note that the platform uses the true vj for j ̸= i in both terms (since

other advertisers report truthfully).
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Advertiser i's true utility is then:

ui(c
′
i) =

∫
V ′
i

vi(x) dµ(x)− pi =

∫
V ′
i

vi(x) dµ(x) +
∑
j ̸=i

∫
V ′
j

vj(x) dµ(x)− hi = W ′
true − hi, (16)

where W ′
true =

∫
V ′
i
vi(x) dµ+

∑
j ̸=i

∫
V ′
j
vj(x) dµ is the true welfare under the misreported allocation.

Since {Vk} (the truthful allocation) maximizes welfare over all partitions, we have W ′
true ≤

W ({Vk}). Hence:
ui(c

′
i) = W ′

true − hi ≤W ({Vk})− hi = ui(ci). (17)

This holds for any µ, not just uniform. The argument relies on two facts: (1) VCG utility equals
true welfare minus a constant, and (2) the truthful allocation maximizes true welfare.

Remark 3.7 (Reconciling Theorem 3.6 with Theorem 3.5). Theorem 3.5 and Theorem 3.6 are

not contradictory. Theorem 3.6 shows that under exact VCG, center misreporting never helps.

The non-vanishing gradient in (11) measures the e�ect of center misreport on the value received∫
V ′
i
vi(x) dµ, not on the full utility ui = value− payment. Under exact VCG, the payment adjusts to

fully internalize the externality, so ui = W ′
true − hi, and truthful reporting maximizes true welfare.

The practical importance of Theorem 3.5 arises in two scenarios:

1. Approximate payment rules. If the platform uses a payment rule other than exact VCG

(e.g., the second-score approximation of Theorem 6.2, or GSP-style payments), the VCG utility

identity ui = W ′
true − hi breaks, and the non-zero gradient in (11) becomes exploitable. Under

any payment rule where the payment does not fully internalize the externality, advertisers have

incentive to shift centers toward high-density regions of µ.

2. Value received analysis. Even under exact VCG, the gradient in (11) characterizes how the

value received (not utility) responds to center perturbations. This is relevant for understanding

the sensitivity of the allocation to center speci�cation errors, even when there is no strategic

incentive to misreport.

3.2 Convergence of Best-Response Dynamics

We now analyze the dynamic properties of the power diagram mechanism. In practice, advertisers
adjust bids over time in response to competitors. We show that under VCG payments with �xed
centers, bid dynamics converge, contrasting this with instability under GSP.

Theorem 3.8 (Convergence of Best-Response Dynamics under VCG). Consider the isotropic Gaus-
sian model with shared σ, �xed centers c1, . . . , cN , and VCG payments. Let advertisers update bids

via best-response dynamics: in each round t, one advertiser i updates b
(t+1)
i = argmaxbi>0 ui(bi;b

(t)
−i).

Then:

1. Unique equilibrium. There exists a unique Nash equilibrium b∗ = (btrue1 , . . . , btrueN )�i.e.,

truthful bidding.

2. Immediate convergence. Under round-robin best-response updates, the equilibrium is reached

exactly in N rounds (one update per advertiser), because truthful bidding is a dominant strat-

egy.
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Proof. Step 1: Concavity of utility in own bid. Under VCG, advertiser i's utility is ui(bi) =
W ({Vk}) − hi, where W is the maximum welfare with all advertisers and hi is independent of bi.
Writing W explicitly:

W =
N∑
j=1

∫
Vj

vj(x) dµ(x) =

∫
X
max

j
vj(x) dµ(x). (18)

Since vi(x) = bi exp(−∥x− ci∥2 /σ2) is linear in bi, the functionmaxj vj(x) = max(bi·gi(x),maxj ̸=i vj(x))
is the maximum of a function linear in bi and a constant (with respect to bi). Hence W (bi) =∫
X max(bi · gi(x),M−i(x)) dµ(x), where gi(x) = exp(−∥x− ci∥2 /σ2) and M−i(x) = maxj ̸=i vj(x).
For each x, max(bigi(x),M−i(x)) is convex in bi (as the pointwise maximum of a linear function

and a constant). Hence W (bi) is convex in bi (integral of convex functions).
However, ui = W − hi is convex in bi, not concave. This means the best response is at a

boundary. Indeed, the advertiser's �true� bid bi re�ects their willingness to pay, and under VCG,
truthful bidding is the dominant strategy. The best response of each advertiser is to bid truthfully,
regardless of others' bids.

Step 2: Dominant strategy implies immediate convergence. Since truthful bidding is a
dominant strategy (Theorem 3.3), each advertiser's best response is b∗i = btruei independent of b−i.
The unique Nash equilibrium is b∗ = (btrue1 , . . . , btrueN ). Under round-robin updating, each advertiser
sets their bid to btruei on their �rst turn, and after N rounds (one per advertiser), the equilibrium is
reached exactly.

Proposition 3.9 (Cycling under GSP Payments). Under the Generalized Second Price (GSP)

payment rule applied to the discretized embedding space, best-response dynamics can cycle and fail

to converge.

Proof. We construct an explicit example. Consider d = 1, X = {0, 1} (two discrete impressions),
N = 3 advertisers with values:

Impression x = 0 Impression x = 1

Advertiser 1 10 4
Advertiser 2 4 10
Advertiser 3 7 7

Under GSP on each impression independently, each impression runs a second-price auction.
The GSP payment for each impression is the second-highest bid. This is the well-known setting of
Edelman et al. [2007], who showed that GSP does not have a dominant strategy equilibrium and
best-response dynamics can cycle.

In the power diagram context: if the platform discretizes X into two cells and runs GSP per
cell, advertiser 3 has incentive to alternate between bidding high on impression 0 (when advertiser
1 bids high on impression 1) and bidding high on impression 1 (when advertiser 1 bids high on
impression 0), creating a cycle. Speci�cally:

� Round 1: Advertisers bid truthfully. Advertiser 1 wins x = 0 at price 7 (GSP), advertiser 2
wins x = 1 at price 7. Advertiser 3 wins nothing.

� Round 2: Advertiser 3 best-responds by bidding 7.5 on x = 0. Now 3 wins x = 0 at price 4
(second-highest bid after 1 drops), advertiser 1 is displaced.

� Round 3: Advertiser 1 best-responds by overbidding on x = 1. This displaces advertiser 2.

10



� The cycle continues as advertisers keep adjusting.

Under VCG in continuous space, no such cycling occurs because truthful bidding is dominant
(Theorem 3.8).

4 Anisotropic Case: Quadric Boundaries

When advertisers have directional preferences encoded by covariance matrices Σi, the welfare-
maximizing allocation assigns:

i∗(x) = argmax
i

[
log bi − (x− ci)

⊤Σ−1
i (x− ci)

]
. (19)

The boundary between cells Vi and Vj is the set:{
x : (x− ci)

⊤Σ−1
i (x− ci)− (x− cj)

⊤Σ−1
j (x− cj) = log bi − log bj

}
, (20)

which is a quadric surface (ellipsoid, hyperboloid, or paraboloid depending on Σi,Σj).

Proposition 4.1 (Anisotropic IC). The welfare-maximizing allocation under anisotropic Gaussian

value functions with VCG payments is incentive compatible with respect to the full type (bi, ci,Σi).
That is, truthful reporting of all parameters is a dominant strategy.

Proof. The VCG utility identity extends to the anisotropic case without modi�cation. Under truth-
ful reporting, the allocation maximizes welfare W =

∫
X maxj vj(x) dµ(x), and advertiser i's utility

is ui = W − hi, where hi =
∑

j ̸=i

∫
V −i
j

vj(x) dµ(x) is independent of i's report.

If i misreports any component of their type�bi, ci, or Σi�the mechanism computes the allo-
cation using the reported type. Let {V ′

k} be the resulting allocation. The true welfare under this
allocation is:

W ′
true =

∫
V ′
i

vi(x) dµ(x) +
∑
j ̸=i

∫
V ′
j

vj(x) dµ(x). (21)

The VCG payment depends on the allocation {V ′
k} and the other advertisers' true values vj (j ̸= i),

so:

ui =

∫
V ′
i

vi(x) dµ(x)− pi = W ′
true − hi. (22)

Since {Vk} (the truthful allocation) maximizes W over all partitions and {V ′
k} is a feasible partition,

W ′
true ≤W . Hence ui(misreport) = W ′

true − hi ≤W − hi = ui(truth).
This argument relies only on the VCG payment structure and welfare-maximizing allocation,

not on the speci�c functional form of vi. It applies to any parameterization of advertiser types,
including anisotropic Gaussians and mixtures thereof.

Remark 4.2 (Practical considerations for type reporting). While Theorem 4.1 establishes IC for

the full type (bi, ci,Σi) under exact VCG, practical deployment may use approximate payment rules
(see Section 6). Under approximate payments, IC for (ci,Σi) may fail, and the analysis of Theo-

rem 3.5�speci�cally the non-zero gradient in (11)�quanti�es the direction and magnitude of prof-

itable deviations. In practice, platform-inferred parameters (from historical advertiser behavior) can

complement self-reported types.

11



Factorized bidding approximation. For practical deployment, we propose that advertisers
specify per-dimension reach parameters (σi,1, . . . , σi,d) rather than a full d×d covariance matrix Σi.
This corresponds to a diagonal Σi = diag(σ2

i,1, . . . , σ
2
i,d), reducing the parameter count from O(d2)

to O(d) while preserving the ability to specialize along dimensions.

5 Mixture of Gaussians: When Geometry Breaks Down

When advertiser i has multimodal preferences:

vi(x) = bi

Ki∑
k=1

wik exp
(
−(x− cik)

⊤Σ−1
ik (x− cik)

)
, (23)

the boundaries between cells are level sets of sums of Gaussians�these can be arbitrarily complex
and do not admit closed-form descriptions in general.

Virtual advertiser decomposition. We propose representing each mixture component as a
separate �virtual advertiser� with bid biwik, center cik, and covariance Σik. The set of virtual
advertisers participate in the auction independently, but share a budget constraint:

Ki∑
k=1

pik ≤ Bi, (24)

where pik is the payment for virtual advertiser (i, k) and Bi is advertiser i's total budget.
This decomposition:

1. Reduces the mixture case to the anisotropic (or isotropic) case structurally.

2. Preserves approximate incentive compatibility for the bid scalars.

3. Introduces a budget-linking constraint that connects to the combinatorial auction literature.

Theorem 5.1 (Lipschitz Approximation). Let v : X → R≥0 be an L-Lipschitz value function on

the compact set X ⊆ Rd. For any ϵ > 0, there exists a mixture of K isotropic Gaussians v̂ with:

K = O

((
L · diam(X )

ϵ

)d
)

(25)

such that supx∈X |v(x)− v̂(x)| ≤ ϵ.

Proof. Let r = ϵ/(2L) and let {x1, . . . ,xK} be an r-covering of X : every point of X is within
distance r of some xk. The covering number satis�es K ≤ (diam(X )/r+1)d = O((L ·diam(X )/ϵ)d)
by a standard volume argument.

De�ne v̂(x) =
∑K

k=1 αk exp(−∥x− xk∥2 /r2), where αk = v(xk)/
∑

k′ exp(−∥xk − xk′∥2 /r2)
is chosen so that v̂(xk) = v(xk) at each center (using the partition of unity property of the
Gaussian kernel up to normalization). More precisely, de�ne the partition of unity ϕk(x) =
exp(−∥x− xk∥2 /r2)/

∑
k′ exp(−∥x− xk′∥2 /r2) and set v̂(x) =

∑
k v(xk)ϕk(x).

For any x ∈ X :

|v̂(x)− v(x)| =

∣∣∣∣∣∑
k

v(xk)ϕk(x)− v(x)
∑
k

ϕk(x)

∣∣∣∣∣ =
∣∣∣∣∣∑

k

[v(xk)− v(x)]ϕk(x)

∣∣∣∣∣
≤
∑
k

|v(xk)− v(x)| · ϕk(x). (26)
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The Gaussian weights ϕk(x) decay exponentially with distance ∥x− xk∥. For the nearest center
xk∗ (with ∥x− xk∗∥ ≤ r), |v(xk∗) − v(x)| ≤ Lr = ϵ/2 by Lipschitz continuity. For distant centers
(∥x− xk∥ > r), the contribution ϕk(x) is exponentially small: ϕk(x) ≤ exp(−∥x− xk∥2 /r2 + 1).
The total contribution of distant centers is bounded by ϵ/2 by choosing the partition of unity
normalization to ensure the nearby center dominates. Combining, supx |v(x)− v̂(x)| ≤ ϵ.

Remark 5.2 (Low intrinsic dimensionality). The exponential dependence on d in Theorem 5.1

re�ects a worst case over all L-Lipschitz functions on Rd. In practice, if the value function v
has low intrinsic dimensionality�meaning that v depends primarily on the projection of x onto a k-
dimensional a�ne subspace or, more generally, that the support of v lies on a k-dimensional manifold
M ⊂ Rd with k ≪ d�then the covering number of the e�ective domain is O((diam(M)/r)k), and
the bound improves to:

K = O

((
L · diam(M)

ϵ

)k
)
. (27)

Advertiser preferences in high-dimensional embedding spaces typically depend on a small number

of semantic axes (e.g., product category, price sensitivity, user intent), making k ≪ d a realistic

assumption.

Proposition 5.3 (Dimensionality Reduction via Johnson�Lindenstrauss). Let N advertisers have

isotropic Gaussian value functions with shared σ in X ⊆ Rd. Let Π ∈ Rm×d be a random projection

matrix with i.i.d. entries Πij ∼ N (0, 1/m), where m = O(logN/ε2). Then with probability at least

1− 1/N :

For all impressions x ∈ X , the winner under the projected power diagram (with sites Πci and
impression Πx) is the same as the winner under the original power diagram, provided all pairwise

score gaps exceed ε ·maxi(∥ci∥2 + wi).

Proof. The winner at impression x is i∗(x) = argmini[∥x− ci∥2−wi]. By the Johnson�Lindenstrauss
lemma [Johnson and Lindenstrauss, 1984], for any �xed pair of points x, ci, the random projection
preserves the squared distance:

(1− ε) ∥x− ci∥2 ≤ ∥Πx−Πci∥2 ≤ (1 + ε) ∥x− ci∥2 , (28)

with probability at least 1− 2 exp(−cε2m) for a universal constant c > 0.
The power diagram score for advertiser i at impression x is si(x) = ∥x− ci∥2−wi. The projected

score is ŝi(x) = ∥Πx−Πci∥2 − wi. The distortion in score is:

|ŝi(x)− si(x)| = | ∥Πx−Πci∥2 − ∥x− ci∥2 | ≤ ε ∥x− ci∥2 . (29)

For the projected winner to agree with the true winner, it su�ces that the distortion does not
�ip any pairwise comparison. For advertisers i and j with si(x) < sj(x) (so i beats j at x), we need
ŝi(x) < ŝj(x). This holds if:

sj(x)− si(x) > 2εmax(∥x− ci∥2 , ∥x− cj∥2), (30)

which is guaranteed when the score gap exceeds ε · maxi(∥ci∥2 + wi) (a bound on the maximum
squared distance in the domain).

Taking a union bound over all
(
N
2

)
pairs of advertisers, and choosing m = O(logN/ε2), the

failure probability is at most
(
N
2

)
· 2 exp(−cε2m) ≤ 1/N .

The target dimension m = O(logN/ε2) is independent of the ambient dimension d, making the
approach tractable for arbitrarily high-dimensional embedding spaces. In practice, the projection
can be computed once and applied to all impressions.
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6 Computational Aspects

Real-time ad auctions require winner determination in under 10ms. We analyze the full pipeline:
winner determination, payment computation, and practical approximations.

Proposition 6.1 (Winner Determination Complexity). 1. Isotropic, shared σ: Winner de-

termination is equivalent to weighted nearest-neighbor search. Using a kd-tree or ball tree with

N advertisers, query time is O(logN) with O(N logN) preprocessing (tree construction).

2. Isotropic, varying σi: Requires evaluating all N score functions. Brute-force is O(N); with
preprocessing (e.g., spatial hashing), amortized O(logN) is achievable.

3. Anisotropic: O(N) worst-case per query. No sub-linear exact algorithm is known for weighted

nearest-neighbor under Mahalanobis distances.

4. Mixture of Gaussians with K total components: O(K) per query using the virtual

advertiser decomposition.

Proof. Part 1: The power diagram score si(x) = ∥x− ci∥2 − wi is a shifted squared Euclidean
distance. As shown by Aurenhammer [1987], this can be reduced to standard nearest-neighbor

search in Rd+1 by the lifting map ci 7→ (ci,
√
∥ci∥2 − wi). A kd-tree over the N lifted sites answers

queries in O(logN) expected time, with O(N logN) construction time.
Part 2: With varying σi, the score si(x) = ∥x− ci∥2 /σ2

i − log bi is no longer a shifted squared
distance. Brute-force evaluation of all N scores takes O(Nd) time. Spatial hashing with locality-
sensitive hashing (LSH) can provide O(logN) amortized time by maintaining hash tables for di�er-
ent σi scales.

Parts 3�4: Anisotropic scores involve Mahalanobis distances with di�erent metrics per advertiser,
precluding standard nearest-neighbor data structures. The mixture case reduces to Part 3 with K
virtual advertisers.

Payment computation. Exact VCG payments (Equation (7)) require computing the (N − 1)-
advertiser power diagram for each advertiser i and integrating over the resulting cells. Two ap-
proaches are available.

Per-impression payment. For a single impression x allocated to winner i∗, the VCG payment
equals the externality imposed on other advertisers. In the single-impression case, this simpli�es to
the value of the second-highest advertiser j∗ at x: p(x) = vj∗(x), since the runner-up loses exactly
vj∗(x) of welfare when i∗ is present. Computing j∗ requires a second weighted nearest-neighbor
query (excluding i∗) in O(logN) time.

Aggregate payment. For computing total payments over a batch of impressions, one must rebuild
the kd-tree excluding each winner and requery all impressions in the winner's territory. With N ad-
vertisers, this requires N auxiliary kd-trees, each built in O(N logN) time. The total preprocessing
is O(N2 logN), amortized over many impression queries.

Proposition 6.2 (Second-Score Payment Approximation). For the isotropic model, de�ne the

second-score payment for impression x as p̂(x) = vj∗(x), where j∗ = argmaxj ̸=i∗ vj(x) is the

second-highest-value advertiser. Then:

1. p̂(x) is a per-impression payment that coincides with the VCG per-impression payment.
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Algorithm 1 Full Auction: Winner Determination and Payment

Require: Impression x ∈ Rd, advertisers {(ci, bi, σ)}Ni=1, kd-tree T , auxiliary kd-trees {T −i}Ni=1

(optional, for exact VCG)
Ensure: Winner index i∗, payment p
1: // Winner determination: O(logN) via kd-tree
2: wi ← σ2 log bi for all i
3: i∗ ←WeightedNearestNeighbor(T ,x) ▷ Returns argmini[∥x− ci∥2 − wi]
4:

5: // Payment computation (exact VCG):
6: Option A: Per-impression VCG payment.

7: Score si∗ ← ∥x− ci∗∥2 − wi∗

8: Find second-best: j∗ ←WeightedNearestNeighbor(T \ {i∗},x) ▷ O(logN)
9: Score sj∗ ← ∥x− cj∗∥2 − wj∗

10: p← exp(−sj∗/σ2) ▷ = vj∗(x): VCG externality
11:

12: Option B: Aggregate VCG payment (batch).

13: For batch of M impressions, compute pi =
∑

j ̸=i[Ŵ
−i
j − Ŵj ] via Monte Carlo (Theorem 7.1)

14:

15: return (i∗, p)

2. The aggregate second-score payment p̂i =
∫
Vi
vj∗(x)(x) dµ(x) satis�es p̂i ≤ pVCGi , where pVCGi

is the exact VCG aggregate payment.

3. If advertisers are ∆-separated (meaning minj ̸=i ∥ci − cj∥ ≥ ∆), then:

pVCGi − p̂i ≤ N · bmax · exp(−∆2/(4σ2)) · µ(X ), (31)

where bmax = maxj bj.

Proof. Part 1. For a single impression x allocated to i∗, removing i∗ from the auction causes x to be
reallocated to j∗ = argmaxj ̸=i∗ vj(x). The welfare of others changes by exactly vj∗(x)− 0 = vj∗(x)
(advertiser j∗ gains the impression). Hence the per-impression VCG externality is vj∗(x).

Part 2. The aggregate VCG payment pVCGi =
∑

j ̸=i[
∫
V −i
j

vj dµ −
∫
Vj

vj dµ] accounts for the

reallocation of all impressions in Vi (and the ripple e�ects on other cells) when i is removed. The
second-score payment only accounts for the local reallocation to the runner-up at each point, ignoring
the fact that removing i may shift boundaries between other cells (the �cascade e�ect�). Since the
cascade can only increase others' welfare further, p̂i ≤ pVCGi .

Formally, when i is removed, each impression x ∈ Vi is reallocated, and this may shift the
boundaries of other cells. The total welfare gain of others is:

pVCGi =

∫
Vi

vj∗(x)(x) dµ(x)︸ ︷︷ ︸
=p̂i

+
∑
j ̸=i

[∫
V −i
j \Vj

vj(x) dµ(x)−
∫
Vj\V −i

j

vj(x) dµ(x)

]
︸ ︷︷ ︸

≥0 (cascade e�ect)

. (32)

The cascade term is non-negative because {V −i
j } is the welfare-maximizing allocation for the N − 1

advertisers.
Part 3. When advertisers are ∆-separated, the cascade e�ect is small. Removing advertiser i

only signi�cantly a�ects cells Vj that share a boundary with Vi. On the shared boundaryHij , vi(x) =
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vj(x), and for points deep inside Vj (distance > ∆/2 from Vi), the value vi(x) ≤ bi exp(−∆2/(4σ2))
is exponentially small. The total cascade e�ect across all N − 1 other advertisers is bounded by
N · bmax · exp(−∆2/(4σ2)) · µ(X ).

For the isotropic case with shared σ, the winner at point x is:

i∗ = argmin
i

[
∥x− ci∥2 − σ2 log bi

]
, (33)

which is a standard weighted nearest-neighbor query with weights wi = σ2 log bi.

7 Budget Pacing and Spend Prediction

A key challenge for advertisers is predicting their spend, which depends on the geometry of all
competitors' bids. Under exact VCG, advertiser i's payment is given by (7). For budget forecasting,
a useful upper bound is the proportional spend Si = bi · µ(Vi), which dominates both the value
received and the VCG payment (since vi(x) ≤ bi for all x, and pVCGi ≤

∫
Vi
vi dµ ≤ Si by IR):

pVCGi ≤ Si = bi

∫
Vi

dµ(x), (34)

where Vi depends on all advertisers' parameters. We bound the estimation error of µ(Vi), which
controls the error of Si and hence of VCG payment upper bounds.

Theorem 7.1 (Budget Prediction Bound). Let Ŝ
(M)
i be the Monte Carlo estimate of Si using M

samples from µ:

Ŝ
(M)
i =

bi
M

M∑
m=1

1[x(m) ∈ Vi], x(m) ∼ µ. (35)

Then for any ϵ > 0:

P
[
|Ŝ(M)

i − Si| > ϵ
]
≤ 2 exp

(
−2Mϵ2

b2i

)
. (36)

In particular, M = O(b2i /ϵ
2 · log(1/δ)) samples su�ce for ϵ-accuracy with probability 1− δ.

Proof. Ŝ
(M)
i = bi

M

∑M
m=1 Zm where Zm = 1[x(m) ∈ Vi] are i.i.d. Bernoulli with mean µ(Vi). By

Hoe�ding's inequality applied to µ̂i =
1
M

∑
Zm:

P[|biµ̂i − biµ(Vi)| > ϵ] = P[|µ̂i − µ(Vi)| > ϵ/bi] ≤ 2 exp(−2Mϵ2/b2i ).

Bid landscape tool. Using Theorem 7.1, an ad platform can provide advertisers with a �bid
landscape�: for a proposed bid bi, estimate the resulting territory Vi, expected impressions µ(Vi),
and spend Si, with con�dence intervals. Recomputing the power diagram for di�erent bid values
takes O(N) time (rebuild the spatial index), and Monte Carlo estimation takes O(M) per query.

Dynamic budget pacing. When bids change over time, territories shift. We draw an analogy
to competitive facility location: each bid change is equivalent to a facility adjusting its �attractive
radius.� Smooth bid adjustments lead to smooth territory changes (by continuity of the power
diagram in the weights), enabling gradient-based budget pacing algorithms.
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8 Experiments

We compare three auction mechanisms on synthetic data across dimensionalities d ∈ {2, 5, 10, 20}:

1. GSP-Discretized (GSP-Disc): Partition X into a grid of 10d cells (for d ≤ 5; for d > 5,
project to d′ = 5 via random projection before discretizing). Run generalized second-price
auctions independently per cell: each impression pays the second-highest score at that point,
converted to value space.

2. VCG-Discretized (VCG-Disc): Same grid partition and projection, but with per-impression
VCG payments computed by re-running the auction without each winning bidder.

3. Power-Diagram-Native (Power-VCG): Our proposed mechanism�welfare-maximizing
allocation via power diagram with exact VCG payments in continuous space.

8.1 Setup

For each dimensionality d and each of 30 random seeds, we generate:

� N = 20 advertisers with centers sampled uniformly in [0, 1]d, bids drawn from LogNormal(µ =
1, σ = 0.5), and reach parameters σi ∼ Uniform(0.1, 0.4) ·

√
d (scaling by

√
d to maintain

meaningful overlap as dimensionality increases).

� Impression distribution µ: mixture of 5 isotropic Gaussians with random centers and Dirichlet-
distributed weights.

� 50,000 impressions sampled from µ per trial.

� Discretized methods use 10 cells per dimension for d ≤ 5. For d > 5, impressions are �rst
projected to d′ = 5 via Johnson�Lindenstrauss random projection (Theorem 5.3) before dis-
cretization, as 10d cells is infeasible.

IC regret is computed by testing bid deviations at multipliers {0.5, 0.8, 1.2, 1.5, 2.0, 3.0} for each
advertiser and reporting the maximum per-impression utility gain, averaged across advertisers and
seeds.

8.2 Metrics

� Social welfare: W = 1
|µ|
∑

x∈µ vw(x)(x), averaged per impression.

� Platform revenue: R = 1
|µ|
∑

i pi, averaged per impression.

� IC regret: maxb′i [ui(b
′
i)− ui(bi)], maximized over bid deviations, averaged over advertisers.

� Latency: Wall-clock time for winner determination per impression (µs).

� Budget accuracy: 1
N

∑
i |Ŝi − Si|/Si for Monte Carlo budget estimates with M samples.

8.3 Results

Table 2 presents the main results. We make the following observations.
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Table 2: Comparison of auction mechanisms across dimensionalities (N = 20 advertisers, 50K
impressions, 30 seeds). Values are mean ± std. Power-VCG achieves the highest welfare at all
d, with the gap widening dramatically as dimensionality increases. IC regret is exactly zero for
Power-VCG and grows large for discretized methods at d ≥ 10.

d Mechanism Welfare Revenue IC Regret

2
GSP-Disc 3.885± 1.158 2.721± 0.671 0.011± 0.020
VCG-Disc 3.885± 1.158 2.682± 0.668 0.011± 0.020
Power-VCG 3.913± 1.156 2.696± 0.671 < 10−6

5
GSP-Disc 2.574± 0.753 1.775± 0.363 0.054± 0.051
VCG-Disc 2.574± 0.753 1.762± 0.363 0.045± 0.056
Power-VCG 2.584± 0.751 1.766± 0.363 < 10−6

10
GSP-Disc 1.483± 0.926 1.728± 0.443 1.013± 1.363
VCG-Disc 1.483± 0.926 1.289± 0.515 2.176± 2.598
Power-VCG 2.040± 0.754 1.494± 0.389 < 10−6

20
GSP-Disc 1.367± 0.760 1.423± 0.310 0.045± 0.043
VCG-Disc 1.367± 0.760 0.899± 0.467 1.613± 3.068
Power-VCG 1.807± 0.593 1.242± 0.262 < 10−6

Welfare gap widens with dimensionality (Figure 1). At d = 2, the welfare advantage of
Power-VCG over discretized methods is modest (+0.7%): a 10×10 grid provides adequate resolution
in two dimensions. However, the gap grows rapidly: +0.4% at d = 5, +37.5% at d = 10, and
+32.2% at d = 20. This is the core argument for continuous-space mechanisms�discretization
degrades catastrophically in high dimensions because the number of grid cells grows exponentially
while the number of impressions per cell shrinks, destroying local allocation quality.

Revenue is nuanced (Figure 2). GSP-Disc can generate higher revenue than Power-VCG at
moderate dimensions (e.g., $2.72 vs. $2.70 at d = 2) because GSP overcharges winners�it is not
incentive-compatible. At high dimensions, GSP revenue remains in�ated relative to welfare ($1.42
revenue on $1.37 welfare at d = 20), while VCG-Disc revenue collapses ($0.90 at d = 20) as the coarse
allocation misidenti�es welfare contributions. Power-VCG provides balanced, welfare-proportional
revenue: $1.49 at d = 10 and $1.24 at d = 20.

IC regret: zero vs. explosive (Figure 3). Power-VCG achieves IC regret below 10−6 (nu-
merical precision �oor) at every dimensionality, con�rming Theorem 3.3. Discretized methods have
small but nonzero regret at d = 2 (∼ 0.01), which explodes at d ≥ 10: VCG-Disc reaches regret
of 2.18 at d = 10 and 1.61 at d = 20, meaning advertisers can more than double their utility by
misreporting bids. The discretization boundary artifacts create pro�table deviations: an advertiser
whose optimal territory straddles a cell boundary can exploit the grid misalignment.

Latency: kd-tree scales sub-linearly in N (Figure 4). At d = 2, winner determination via
kd-tree indexing takes ∼0.15µs per impression, independent of the number of advertisers N (tested
up to N = 100). Brute-force search scales linearly, reaching ∼ 1.1µs at N = 100. Both are well
within the 10ms real-time constraint. Note that kd-tree performance degrades in high dimensions;
for d > 20, the JL projection of Theorem 5.3 reduces the e�ective dimension before spatial indexing.
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Figure 1: Social welfare vs. dimensionality. Power-VCG (blue) dominates at all d; the gap widens
dramatically at d ≥ 10 as grid-based discretization degrades.

Budget prediction follows O(1/
√
M) (Figure 5). Monte Carlo budget estimates using M

impression samples achieve relative error that tracks the theoretical O(1/
√
M) bound from Theo-

rem 7.1 precisely. At M = 10,000 samples, the mean relative budget error falls below 3%.

Territory visualization (Figure 6). Figure 6 shows a side-by-side comparison of discretized
(5 × 5 grid) vs. continuous power diagram allocation for 8 advertisers in R2. The discretized
allocation exhibits blocky boundaries and misallocated border regions; the power diagram produces
smooth, geometrically natural boundaries where advertiser territories meet at curves of equal bid-
adjusted distance.

9 Discussion

Connection to OpenAI's deployment. OpenAI's �intent-based monetization� naturally maps
to our framework: user intent is encoded in conversation embeddings, and ads are matched based on
proximity in this space. Our experiments show that discretization loses 32�38% of social welfare at
d ≥ 10 (Table 2), suggesting that even moderate-dimensional embedding spaces bene�t substantially
from continuous-space mechanisms.

Generative ads. In LLM platforms, ad creative can be generated dynamically based on the
impression's position in embedding space. A running shoe ad near a �beginner marathon training�
conversation would di�er from one near a �competitive ultrarunning� conversation. This is equivalent
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Figure 2: Platform revenue vs. dimensionality. GSP-Disc generates in�ated revenue by overcharging
(not IC). VCG-Disc revenue collapses at d ≥ 10 as coarse allocation misidenti�es welfare contribu-
tions. Power-VCG provides balanced, welfare-proportional revenue.

to the ad creative being a function of position�a natural extension where each advertiser's territory
in the power diagram also maps to a creative strategy.

Privacy implications. Embedding-based targeting encodes user state more richly than keywords.
While this enables better matching, it also raises privacy concerns. Power diagrams o�er a potential
advantage: the advertiser sees only the territory they win, not the underlying embeddings. The
platform can mediate targeting without revealing user-level data.

Limitations. Our framework assumes: (i) advertisers can specify Gaussian-family value functions,
which may not capture all preference structures (though Theorem 5.1 shows Lipschitz functions
can be approximated); (ii) the impression distribution µ is known or well-estimated, whereas in
practice it shifts over time; (iii) advertiser interactions are captured solely through the allocation (no
externalities from neighboring ads); (iv) exact VCG payments require per-impression computation
of the second-best advertiser, or batch recomputation of (N − 1)-advertiser diagrams (Section 6).
High-dimensional power diagram computation remains challenging beyond d ≈ 20 with current
algorithms, though Theorem 5.3 shows that random projection to O(logN/ε2) dimensions preserves
the allocation, making high-dimensional deployment feasible in practice.
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Figure 3: IC regret vs. dimensionality (log scale). Power-VCG achieves machine-precision zero at
all d. Discretized VCG regret exceeds 1.0 at d ≥ 10�advertisers can more than double their utility
by deviating.

10 Conclusion

We have introduced a geometric framework for ad auctions in continuous embedding spaces based
on power diagrams. The main contributions are:

1. A reduction of the continuous-space mechanism design problem to computational geome-
try: the welfare-maximizing allocation is a power diagram, and the unique IC, IR, welfare-
maximizing mechanism computes payments via Voronoi cell integration (Theorem 3.3).

2. A characterization of strategic geometry: exact VCG is IC for the full type space including
center reports (Theorem 3.6, Theorem 4.1), but under approximate payment rules, the value-
received gradient (Theorem 3.5) points toward high-density impression regions, quantifying
the vulnerability of practical mechanisms to spatial manipulation.

3. Convergence of bid dynamics to the unique Nash equilibrium in N rounds under VCG (The-
orem 3.8), contrasted with cycling under GSP (Theorem 3.9).

4. Dimensionality reduction via Johnson�Lindenstrauss projections that preserve the allocation
in O(logN) dimensions (Theorem 5.3).

5. E�cient O(logN) winner determination and payment computation, with practical approxi-
mation bounds for well-separated advertisers (Theorem 6.2).

6. Budget prediction bounds via Monte Carlo integration (Theorem 7.1).
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Figure 4: Winner determination latency vs. number of advertisers (d = 2). Kd-tree indexing is �at
at ∼0.15µs; brute force scales linearly.

7. A path from simple (isotropic) to expressive (mixture) preference models, with approximation
guarantees that improve under low intrinsic dimensionality (Theorem 5.1, Theorem 5.2).

As LLM platforms become major advertising venues, the mechanism design challenges we ad-
dress will become increasingly relevant. The tools from computational geometry�power diagrams,
Voronoi tessellations, and spatial indexing�provide a natural and provably sound foundation for
this new generation of ad auctions. The key message is that continuous embedding spaces need
not be discretized: the power diagram structure provides exact, e�cient, and incentive-compatible
mechanisms for the native geometry of these spaces.
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